Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i...In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.展开更多
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th...A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.展开更多
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic...Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.展开更多
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p...How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.展开更多
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco...Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies.展开更多
Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. ...Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new M_(2)X_(3)-type thermoelectric materials with only the composition information. According to the classic Bi_(2)Te_(3) material, we constructed an M_(2)X_(3)-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database(ICSD) and Materials Project(MP) database. A model based on the random forest(RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements(such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula ^(1)M^(2)M^(1)X^(2)X^(3)X(^(1)M +^(2)M:^(1)X +^(2)X+^(3)X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as Bi_(2)Te_(3) by machine learning.The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library.展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data...Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data so that both time and space complexities of the model are mitigated.Meanwhile,gradient boosting decision tree(GBDT)is used to train the target user profile prediction model.Based on the recommendation results,Bayesian optimization algorithm is applied to optimize the recommendation model,which can effectively improve the prediction accuracy.The experimental results show that the proposed algorithm can improve the accuracy of movie recommendation.展开更多
The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a...The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a Gaussian kernel optimized using the Bayesian optimization technique(BO-SVR with a Gaussian kernel)was proposed.Unlike,traditional approaches that use the internal resistance,and battery capacity as input parameters,this study utilized the equivalent discharging voltage difference interval and equivalent charging voltage difference interval,as they capture the dynamic voltage characteristics associated with the battery degradation.The model was simulated using MATLAB 2023a.The mean absolute error,R^(2),root mean squared error,and mean squared error were considered as performance indicators.The simulation results indicated that the proposed BO-SVR with a Gaussian kernel model had superior performance to other kernel SVR and Gaussian Process Regression models,with a reduced RMSE of 0.0082,thus demonstrating its potential to predict the SoH more accurately.展开更多
Machine learning(ML)has strong potential for soil settlement prediction,but determining hyperparameters for ML models is often intricate and laborious.Therefore,we apply Bayesian optimization to determine the optimal ...Machine learning(ML)has strong potential for soil settlement prediction,but determining hyperparameters for ML models is often intricate and laborious.Therefore,we apply Bayesian optimization to determine the optimal hyperparameter combinations,enhancing the effectiveness of ML models for soil parameter inversion.The ML models are trained using numerical simulation data generated with the modified Cam-Clay(MCC)model in ABAQUS software,and their performance is evaluated using ground settlement monitoring data from an airport runway.Five optimized ML models—decision tree(DT),random forest(RF),support vector regression(SVR),deep neural network(DNN),and one-dimensional convolutional neural network(1D-CNN)—are compared in terms of their accuracy for soil parameter inversion and settlement prediction.The results indicate that Bayesian optimization efficiently utilizes prior knowledge to identify the optimal hyperparameters,significantly improving model performance.Among the evaluated models,the 1D-CNN achieves the highest accuracy in soil parameter inversion,generating settlement predictions that closely match real monitoring data.These findings demonstrate the effectiveness of the proposed approach for soil parameter inversion and settlement prediction,and reveal how Bayesian optimization can refine the model selection process.展开更多
Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposi...Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model.展开更多
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac...Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.展开更多
The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on fa...The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.展开更多
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金supported by National Natural Science Foundation of China (Grant Nos. 60433020, 60175024 and 60773095)European Commission under grant No. TH/Asia Link/010 (111084)the Key Science-Technology Project of the National Education Ministry of China (Grant No. 02090),and the Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, P. R. China
文摘In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.
基金This project was supported by the National Natural Science Foundation of China (70572045).
文摘A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
基金the financial support of this work from the National Natural Science Foundation of China(Grant No.11972073,Grant No.51974357,and Grant No.52274027)supported by China Postdoctoral Science Foundation(Grant No.2022M713204)Scientific Research and Technology Development Project of China National Petroleum Corporation(Grant No.2121DJ2301).
文摘Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints.
基金supported by the National Natural Science Foundation of China(61573285).
文摘How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.
基金the National Science Council of the Republic of China under the Contract No.NSC-97-2112-M-006-006.
文摘Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies.
基金the National Key Research and Development Program of China (No. 2018YFB0703600)Shenzhen Key Projects of Long-Term Support Plan (No. 20200925164021002)。
文摘Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new M_(2)X_(3)-type thermoelectric materials with only the composition information. According to the classic Bi_(2)Te_(3) material, we constructed an M_(2)X_(3)-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database(ICSD) and Materials Project(MP) database. A model based on the random forest(RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements(such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula ^(1)M^(2)M^(1)X^(2)X^(3)X(^(1)M +^(2)M:^(1)X +^(2)X+^(3)X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as Bi_(2)Te_(3) by machine learning.The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library.
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金Supported by the Educational Commission of Liaoning Province of China(No.LQGD2017027).
文摘Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data so that both time and space complexities of the model are mitigated.Meanwhile,gradient boosting decision tree(GBDT)is used to train the target user profile prediction model.Based on the recommendation results,Bayesian optimization algorithm is applied to optimize the recommendation model,which can effectively improve the prediction accuracy.The experimental results show that the proposed algorithm can improve the accuracy of movie recommendation.
基金supported by the Royal Academy of Engineering,UK,under the scheme of Distinguished International Associates(DIA-2424-5-134).
文摘The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a Gaussian kernel optimized using the Bayesian optimization technique(BO-SVR with a Gaussian kernel)was proposed.Unlike,traditional approaches that use the internal resistance,and battery capacity as input parameters,this study utilized the equivalent discharging voltage difference interval and equivalent charging voltage difference interval,as they capture the dynamic voltage characteristics associated with the battery degradation.The model was simulated using MATLAB 2023a.The mean absolute error,R^(2),root mean squared error,and mean squared error were considered as performance indicators.The simulation results indicated that the proposed BO-SVR with a Gaussian kernel model had superior performance to other kernel SVR and Gaussian Process Regression models,with a reduced RMSE of 0.0082,thus demonstrating its potential to predict the SoH more accurately.
基金supported by the National Natural Science Foundation of China(Nos.52378419 and 52478368).
文摘Machine learning(ML)has strong potential for soil settlement prediction,but determining hyperparameters for ML models is often intricate and laborious.Therefore,we apply Bayesian optimization to determine the optimal hyperparameter combinations,enhancing the effectiveness of ML models for soil parameter inversion.The ML models are trained using numerical simulation data generated with the modified Cam-Clay(MCC)model in ABAQUS software,and their performance is evaluated using ground settlement monitoring data from an airport runway.Five optimized ML models—decision tree(DT),random forest(RF),support vector regression(SVR),deep neural network(DNN),and one-dimensional convolutional neural network(1D-CNN)—are compared in terms of their accuracy for soil parameter inversion and settlement prediction.The results indicate that Bayesian optimization efficiently utilizes prior knowledge to identify the optimal hyperparameters,significantly improving model performance.Among the evaluated models,the 1D-CNN achieves the highest accuracy in soil parameter inversion,generating settlement predictions that closely match real monitoring data.These findings demonstrate the effectiveness of the proposed approach for soil parameter inversion and settlement prediction,and reveal how Bayesian optimization can refine the model selection process.
基金The work described in this paper was supported by a grant of the General Research Fund(GRF)from the Research Grant Council of the Hong Kong SAR(No.CUHK4180/10E)the National Natural Science Foundation of China(Grant Nos.60901067 and 61001212)+1 种基金Program for New Century Excellent Talents in University(No.NCET-09-0630)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0954),and the Fundamental Research Funds for the Central Universities.
文摘Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model.
基金Supported by the National Natural Science Foundation of China (No.60435020).
文摘Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.
文摘The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.