期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm 被引量:4
2
作者 Gui-xia Liu, Wei Feng, Han Wang, Lei Liu, Chun-guang ZhouCollege of Computer Science and Technology, Jilin University, Changchun 130012,P.R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期86-92,共7页
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i... In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy. 展开更多
关键词 gene regulatory networks two-stage learning algorithm bayesian network immune evolutionary algorithm
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
3
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm Structure learning Equivalent class
在线阅读 下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model 被引量:3
4
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization Random forest The bayesian algorithm Ensemble learning Particle swarm optimization
原文传递
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
5
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
EARLY CATARACT DETECTION BY DYNAMIC LIGHT SCATTERING WITH SPARSE BAYESIAN LEARNING
6
作者 SU-LONG NYEO RAFAT R.ANSAR 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2009年第3期303-313,共11页
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco... Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies. 展开更多
关键词 CATARACT dynamic light scattering diagnostic algorithm sparse bayesian learning(SBL).
原文传递
Machine learning assisted discovering of new M_(2)X_(3)-type thermoelectric materials 被引量:6
7
作者 Du Chen Feng Jiang +3 位作者 Liang Fang Yong-Bin Zhu Cai-Chao Ye Wei-Shu Liu 《Rare Metals》 SCIE EI CAS CSCD 2022年第5期1543-1553,共11页
Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. ... Recent years have witnessed a continuous discovering of new thermoelectric materials which has experienced a paradigm shift from try-and-error efforts to experience-based discovering and first-principles calculation. However, both the experiment and first-principles calculation deriving routes to determine a new compound are time and resources consuming. Here, we demonstrated a machine learning approach to discover new M_(2)X_(3)-type thermoelectric materials with only the composition information. According to the classic Bi_(2)Te_(3) material, we constructed an M_(2)X_(3)-type thermoelectric material library with 720 compounds by using isoelectronic substitution, in which only 101 compounds have crystalline structure information in the Inorganic Crystal Structure Database(ICSD) and Materials Project(MP) database. A model based on the random forest(RF) algorithm plus Bayesian optimization was used to explore the underlying principles to determine the crystal structures from the known compounds. The physical properties of constituent elements(such as atomic mass, electronegativity, ionic radius) were used to define the feature of the compounds with a general formula ^(1)M^(2)M^(1)X^(2)X^(3)X(^(1)M +^(2)M:^(1)X +^(2)X+^(3)X = 2:3). The primary goal is to find new thermoelectric materials with the same rhombohedral structure as Bi_(2)Te_(3) by machine learning.The final trained RF model showed a high accuracy of 91% on the prediction of rhombohedral compounds. Finally, we selected four important features to proceed with the polynomial fitting with the prediction results from the RF model and used the acquired polynomial function to make further discoveries outside the pre-defined material library. 展开更多
关键词 Thermoelectric materials M_(2)X_(3)-type material library Random forest(RF)algorithm bayesian optimization Machine learning
原文传递
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
8
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
Personalized movie recommendation method based on ensemble learning
9
作者 YANG Kun DUAN Yong 《High Technology Letters》 EI CAS 2022年第1期56-62,共7页
Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data... Aiming at the personalized movie recommendation problem,a recommendation algorithm in-tegrating manifold learning and ensemble learning is studied.In this work,manifold learning is used to reduce the dimension of data so that both time and space complexities of the model are mitigated.Meanwhile,gradient boosting decision tree(GBDT)is used to train the target user profile prediction model.Based on the recommendation results,Bayesian optimization algorithm is applied to optimize the recommendation model,which can effectively improve the prediction accuracy.The experimental results show that the proposed algorithm can improve the accuracy of movie recommendation. 展开更多
关键词 gradient boosting decision tree(GBDT) recommendation algorithm manifold learn-ing ensemble learning bayesian optimization
在线阅读 下载PDF
Bayesian optimized support vector regression with a Gaussian kernel for accurate prediction of the state of health of lithium-ion batteries used for electric vehicle applications
10
作者 Selvaraj Vedhanayaki Vairavasundaram Indragandhi 《Global Energy Interconnection》 2025年第5期891-904,共14页
The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a... The state of health SoH of lithium ion batteries plays a predominant role in ensuring the safe and reliable operation of electric vehicles.In this,a novel SoH estimation approach using support vector regression with a Gaussian kernel optimized using the Bayesian optimization technique(BO-SVR with a Gaussian kernel)was proposed.Unlike,traditional approaches that use the internal resistance,and battery capacity as input parameters,this study utilized the equivalent discharging voltage difference interval and equivalent charging voltage difference interval,as they capture the dynamic voltage characteristics associated with the battery degradation.The model was simulated using MATLAB 2023a.The mean absolute error,R^(2),root mean squared error,and mean squared error were considered as performance indicators.The simulation results indicated that the proposed BO-SVR with a Gaussian kernel model had superior performance to other kernel SVR and Gaussian Process Regression models,with a reduced RMSE of 0.0082,thus demonstrating its potential to predict the SoH more accurately. 展开更多
关键词 Lithium-ion batteries State of health Machine learning algorithms bayesian optimization Kernel function
在线阅读 下载PDF
Machine learning for soil parameter inversion enhanced with Bayesian optimization
11
作者 Anfeng HU Chi WANG +3 位作者 Senlin XIE Zhirong XIAO Tang LI Ang XU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第11期1034-1051,共18页
Machine learning(ML)has strong potential for soil settlement prediction,but determining hyperparameters for ML models is often intricate and laborious.Therefore,we apply Bayesian optimization to determine the optimal ... Machine learning(ML)has strong potential for soil settlement prediction,but determining hyperparameters for ML models is often intricate and laborious.Therefore,we apply Bayesian optimization to determine the optimal hyperparameter combinations,enhancing the effectiveness of ML models for soil parameter inversion.The ML models are trained using numerical simulation data generated with the modified Cam-Clay(MCC)model in ABAQUS software,and their performance is evaluated using ground settlement monitoring data from an airport runway.Five optimized ML models—decision tree(DT),random forest(RF),support vector regression(SVR),deep neural network(DNN),and one-dimensional convolutional neural network(1D-CNN)—are compared in terms of their accuracy for soil parameter inversion and settlement prediction.The results indicate that Bayesian optimization efficiently utilizes prior knowledge to identify the optimal hyperparameters,significantly improving model performance.Among the evaluated models,the 1D-CNN achieves the highest accuracy in soil parameter inversion,generating settlement predictions that closely match real monitoring data.These findings demonstrate the effectiveness of the proposed approach for soil parameter inversion and settlement prediction,and reveal how Bayesian optimization can refine the model selection process. 展开更多
关键词 ABAQUS software bayesian optimization Machine learning(ML)algorithms Parameter inversion Settlement prediction
原文传递
基于遗传算法的Bayesian网结构学习研究 被引量:44
12
作者 刘大有 王飞 +2 位作者 卢奕南 薛万欣 王松昕 《计算机研究与发展》 EI CSCD 北大核心 2001年第8期916-922,共7页
从不完备数据中学习网络结构是 Bayesian网学习的难点之一 ,计算复杂度高 ,实现困难 .针对该问题提出了一种进化算法 .设计了结合数学期望的适应度函数 ,该函数利用进化过程中的最好 Bayesian网把不完备数据转换成完备数据 ,从而大大简... 从不完备数据中学习网络结构是 Bayesian网学习的难点之一 ,计算复杂度高 ,实现困难 .针对该问题提出了一种进化算法 .设计了结合数学期望的适应度函数 ,该函数利用进化过程中的最好 Bayesian网把不完备数据转换成完备数据 ,从而大大简化了学习的复杂度 ,并保证算法能够向好的结构不断进化 .此外 ,给出了网络结构的编码方案 ,设计了相应的遗传算子 ,使得该算法能够收敛到全局最优的 Bayesian网结构 .模拟实验结果表明 ,该算法能有效地从不完备数据中学习 . 展开更多
关键词 bayesian 学习 遗传算法 数据处理 人工智能
在线阅读 下载PDF
基于遗传算法的Bayesian网结构增量学习的研究 被引量:9
13
作者 王飞 刘大有 王淞昕 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1461-1466,共6页
已建成的Bayesian网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特性,因此在观察到新数据时,改善Bayesian网的性能和优化网络结构是十分必要的.提出了一种基于遗传算法的Bayesian网(包含结构和参数)求精算法.该算法基于... 已建成的Bayesian网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特性,因此在观察到新数据时,改善Bayesian网的性能和优化网络结构是十分必要的.提出了一种基于遗传算法的Bayesian网(包含结构和参数)求精算法.该算法基于上次的求精结果把已有的不完备数据转化成完备数据,以期望充分统计因子作为已有数据的主要存储形式,基于本次求精过程中的当前最佳个体对新数据进行完备化,并由遗传操作综合利用新数据和已有数据进行求精.模拟实验结果表明,该增量学习算法能较有效地从不完备数据中求精Bayesian网. 展开更多
关键词 增量学习 bayesian 不完备数据 数学期望 遗传算法
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
14
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
基于Bayesian学习的适应性优化协商模型 被引量:6
15
作者 侯薇 董红斌 印桂生 《计算机研究与发展》 EI CSCD 北大核心 2014年第4期721-730,共10页
在复杂的自动协商环境中,设计能够处理不完全信息和动态情形的协商agent有效学习机制正成为具有挑战性的议题.提出了一种基于Bayesian学习的时间依赖的双边多议题协商优化模型(BLMSEAN).通过只观察对手的历史报价,将Bayesian学习和基于... 在复杂的自动协商环境中,设计能够处理不完全信息和动态情形的协商agent有效学习机制正成为具有挑战性的议题.提出了一种基于Bayesian学习的时间依赖的双边多议题协商优化模型(BLMSEAN).通过只观察对手的历史报价,将Bayesian学习和基于混合策略的演化算法相结合,所提模型使得协商agent能够对于对手协商参数的概率分布有更精确的估计(如期限、保留报价和议题权重等),能够适应性地调整让步策略使协商双方都受益,提高了协商的成功率和效用.通过实验可以显示所提的模型学习对手私有信息和适应性调整让步策略的有效性. 展开更多
关键词 自动协商 让步策略 bayesian学习 回归分析 演化算法
在线阅读 下载PDF
不完备证据条件下的Bayesian网络参数学习
16
作者 刘震 周明天 《计算机科学》 CSCD 北大核心 2008年第1期171-175,共5页
在Bayesian网络推理中,对节点做参数学习是必不可少的。但在学习过程中,常常会出现证据丢失,导致参数收敛速度减慢,同时影响参数学习的精确度,甚至给参数收敛带来困难。针对这样的问题,本文提出一种证据丢失参数模型,并推导出包含学习率... 在Bayesian网络推理中,对节点做参数学习是必不可少的。但在学习过程中,常常会出现证据丢失,导致参数收敛速度减慢,同时影响参数学习的精确度,甚至给参数收敛带来困难。针对这样的问题,本文提出一种证据丢失参数模型,并推导出包含学习率的EM更新算法。收敛性能的理论分析和仿真试验结果两方面均表明,新算法与传统处理算法相比,在不降低参数估计精度的前提下,具有更快的收敛速度,为保证不完备证据条件下可信高效的Bayes-ian网络参数学习提供了一条可行的解决途径。 展开更多
关键词 bayesian网络 证据丢失 EM(η)算法 学习率
在线阅读 下载PDF
基于改进爬山算法的Bayesian网结构增量学习方法
17
作者 万猛 刘勇 《兰州理工大学学报》 CAS 北大核心 2013年第5期78-81,共4页
已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时... 已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时的禁忌表和环路禁忌表,避免搜索不必要的冗余结点,提高搜索效率,并给出禁忌表的更新方法.在ALARM数据集上进行实验,结果表明该算法是有效的. 展开更多
关键词 贝叶斯网络 增量学习 结构学习 爬山算法 禁忌表
在线阅读 下载PDF
Radar HRRP statistical recognition with temporal factor analysis by automatic Bayesian Ying-Yang harmony learning 被引量:2
18
作者 Penghui WANG Lei SHI +3 位作者 Lan DU Hongwei LIU Lei XU Zheng BAO 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第2期300-317,共18页
Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposi... Radar high-resolution range profiles(HRRPs)are typical high-dimensional and interdimension dependently distributed data,the statistical modeling of which is a challenging task for HRRP-based target recognition.Supposing that HRRP samples are independent and jointly Gaussian distributed,a recent work[Du L,Liu H W,Bao Z.IEEE Transactions on Signal Processing,2008,56(5):1931–1944]applied factor analysis(FA)to model HRRP data with a two-phase approach for model selection,which achieved satisfactory recognition performance.The theoretical analysis and experimental results reveal that there exists high temporal correlation among adjacent HRRPs.This paper is thus motivated to model the spatial and temporal structure of HRRP data simultaneously by employing temporal factor analysis(TFA)model.For a limited size of high-dimensional HRRP data,the two-phase approach for parameter learning and model selection suffers from intensive computation burden and deteriorated evaluation.To tackle these problems,this work adopts the Bayesian Ying-Yang(BYY)harmony learning that has automatic model selection ability during parameter learning.Experimental results show stepwise improved recognition and rejection performances from the twophase learning based FA,to the two-phase learning based TFA and to the BYY harmony learning based TFA with automatic model selection.In addition,adding many extra free parameters to the classic FA model and thus becoming even worse in identifiability,the model of a general linear dynamical system is even inferior to the classic FA model. 展开更多
关键词 radar automatic target recognition(RATR) high-resolution range profile(HRRP) temporal factor analysis(TFA) bayesian ying-yang(BYY)harmony learning automatic model selection
原文传递
WORD SENSE DISAMBIGUATION BASED ON IMPROVED BAYESIAN CLASSIFIERS 被引量:1
19
作者 Liu Ting Lu Zhimao Li Sheng 《Journal of Electronics(China)》 2006年第3期394-398,共5页
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac... Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%. 展开更多
关键词 Word Sense Disambiguation (WSD) Natural Language Processing (NLP) Unsupervised learning algorithm Dependency Grammar (DG) bayesian classifier
在线阅读 下载PDF
A Software Risk Analysis Model Using Bayesian Belief Network 被引量:1
20
作者 Yong Hu Juhua Chen +2 位作者 Mei Liu Xang Yun Junbiao Tang 《南昌工程学院学报》 CAS 2006年第2期102-106,共5页
The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on fa... The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects. 展开更多
关键词 software risk analysis bayesian Belief Network EM algorithm parameter learning
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部