期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Bayesian Lasso方法的变量选择和异常值检测 被引量:2
1
作者 尚华 冯牧 +1 位作者 张贝贝 于凤敏 《计算机应用研究》 CSCD 北大核心 2015年第12期3586-3589,共4页
针对Bayesian Lasso方法的变量选择和异常值检测进行了研究。该方法是在线性回归模型中引入识别变量,借助于双层Bayesian模型和Gibbs抽样算法,给出识别变量后验概率的计算方法和变量选择的方法,通过比较这些识别变量的后验概率进行异常... 针对Bayesian Lasso方法的变量选择和异常值检测进行了研究。该方法是在线性回归模型中引入识别变量,借助于双层Bayesian模型和Gibbs抽样算法,给出识别变量后验概率的计算方法和变量选择的方法,通过比较这些识别变量的后验概率进行异常值定位。最后进行了大量的模拟实验,结果表明,该方法是可行且有效的。 展开更多
关键词 变量选择 异常值 bayesian lasso方法 GIBBS抽样
在线阅读 下载PDF
基于贝叶斯学习的惩罚因子的选择 被引量:1
2
作者 焦瑞强 赵联文 +1 位作者 刘赪 任桃红 《统计与决策》 CSSCI 北大核心 2017年第14期10-14,共5页
文章基于贝叶斯学习,将正则化方法从贝叶斯分析的角度展开,在响应变量服从正态分布、回归系数服从指数型先验分布族的条件下,用贝叶斯准则给出了惩罚因子的取值与响应变量、系数的方差之间的关系,并将这一结果应用到岭回归和lasso回归... 文章基于贝叶斯学习,将正则化方法从贝叶斯分析的角度展开,在响应变量服从正态分布、回归系数服从指数型先验分布族的条件下,用贝叶斯准则给出了惩罚因子的取值与响应变量、系数的方差之间的关系,并将这一结果应用到岭回归和lasso回归中惩罚因子的选择。实例检验结果表明,当响应变量和系数服从正态分布,惩罚因子的值取二者方差商的方法比岭迹法和广义交叉验证法(GCV)拟合效果更优。 展开更多
关键词 正则化方法 惩罚因子 贝叶斯准则 岭回归 lasso回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部