The path protection approach is widely investigated as a survivability solution for GMPLS networks, which has the advantage of efficient capacity utilization. However, there is a problem of the path protection approac...The path protection approach is widely investigated as a survivability solution for GMPLS networks, which has the advantage of efficient capacity utilization. However, there is a problem of the path protection approach that searching a disjoint backup path for a primary path is often unsuccessful. In order to resolve this problem, an integrated dynamic shared protection (IDSP) algorithm is proposed. The main idea of the proposed algorithm is that the path protection approach is first used to establish a backup path for the primary path; if the establishment is unsuccessful, then the primary path is dynamically divided into segments whose hop count are not fixed but not more than the limitation calculated by the equations introduced. In this proposal, backup bandwidth sharing is allowed to improve the capacity utilization ratio, which makes the link cost function quite different from previous ones. Simulation experiments are presented to demonstrate the efficiency of the proposed method compared with previous methods. Numerical results show that IDSP can not only achieve low protection failure probability but can also gain a better tradeoff between the protection overbuild and the average recovery time.展开更多
The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptograph...The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptographic protection on wireless communication respectively, as well as minimizing energy consumption (i.e., Green criteria) by switching off unnecessary resources as much as possible. There is a contradiction to satisfy both Blue and Green design criteria simultaneously. In this paper, we propose a new BlueGreen topological control scheme to leverage the wireless link connectivity for WCNs using an adaptive encryption key allocation mechanism, named as Shared Backup Path Keys (SBPK). The BlueGreen SBPK can take into account the network dependable requirements such as service resilience, security assurance and energy efficiency as a whole, so as trading off between them to find an optimal solution. Actually, this challenging problem can be modeled as a global optimization problem, where the network working and backup elements such as nodes, links, encryption keys and their energy consumption are considered as a resource, and their utilization should be minimized. The case studies confirm that there is a trade-off optimal solution between the capacity efficiency and energy efficiency to achieve the dependable WCNs.展开更多
基金supported by the National Natural Science Foundation of China (60673142)Applied Basic Research Project of Sichuan Province (2006J13-067).
文摘The path protection approach is widely investigated as a survivability solution for GMPLS networks, which has the advantage of efficient capacity utilization. However, there is a problem of the path protection approach that searching a disjoint backup path for a primary path is often unsuccessful. In order to resolve this problem, an integrated dynamic shared protection (IDSP) algorithm is proposed. The main idea of the proposed algorithm is that the path protection approach is first used to establish a backup path for the primary path; if the establishment is unsuccessful, then the primary path is dynamically divided into segments whose hop count are not fixed but not more than the limitation calculated by the equations introduced. In this proposal, backup bandwidth sharing is allowed to improve the capacity utilization ratio, which makes the link cost function quite different from previous ones. Simulation experiments are presented to demonstrate the efficiency of the proposed method compared with previous methods. Numerical results show that IDSP can not only achieve low protection failure probability but can also gain a better tradeoff between the protection overbuild and the average recovery time.
文摘The future Wireless Cloud Networks (WCNs) are required to satisfy both extremely high levels of service resilience and security assurance (i.e., Blue criteria) by overproviding backup network resources and cryptographic protection on wireless communication respectively, as well as minimizing energy consumption (i.e., Green criteria) by switching off unnecessary resources as much as possible. There is a contradiction to satisfy both Blue and Green design criteria simultaneously. In this paper, we propose a new BlueGreen topological control scheme to leverage the wireless link connectivity for WCNs using an adaptive encryption key allocation mechanism, named as Shared Backup Path Keys (SBPK). The BlueGreen SBPK can take into account the network dependable requirements such as service resilience, security assurance and energy efficiency as a whole, so as trading off between them to find an optimal solution. Actually, this challenging problem can be modeled as a global optimization problem, where the network working and backup elements such as nodes, links, encryption keys and their energy consumption are considered as a resource, and their utilization should be minimized. The case studies confirm that there is a trade-off optimal solution between the capacity efficiency and energy efficiency to achieve the dependable WCNs.