High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating gen...High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.展开更多
Whole-genome genotyping methods are important for breeding.However,it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes...Whole-genome genotyping methods are important for breeding.However,it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species.In our study,we accidently discovered that in adapter ligation-mediated PCR,the amplification by primertemplate mismatched annealing(PTMA)along the genome could generate thousands of stable PCR products.Based on this observation,we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing(FBI-seq)using one specific primer,in which foreground genotyping is performed by primer-template perfect annealing(PTPA),while background genotyping employs PTMA.Unlike DNA arrays,multiple PCR,or genome target enrichments,FBI-seq requires little preliminary work for primer design and synthesis,and it is easily adaptable to different foreground genes and species.FBI-seq therefore provides a prolific,robust,and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the postgenomics era.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.32102383,32225044 and 32130093)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QC075)+1 种基金the Taishan Scholar Foundation of the People's Government of Shandong Province(Grant No.ts20190947)the Qingdao Agricultural University Doctoral Start-Up Fund。
文摘High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.
基金supported by the National Natural Science Foundation of China(31970379 and 32172086)the Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP)+3 种基金the National Key R&D Program of China (ZZ202001)the R&D program of Shenzhen (KCXFZ20211020164207012)the R&D program in key areas of Guangdong Province (2021B0707010006)the Science and Technology Planning Project of Guangdong Province (2022B0202060002)。
文摘Whole-genome genotyping methods are important for breeding.However,it has been challenging to develop a robust method for simultaneous foreground and background genotyping that can easily be adapted to different genes and species.In our study,we accidently discovered that in adapter ligation-mediated PCR,the amplification by primertemplate mismatched annealing(PTMA)along the genome could generate thousands of stable PCR products.Based on this observation,we consequently developed a novel method for simultaneous foreground and background integrated genotyping by sequencing(FBI-seq)using one specific primer,in which foreground genotyping is performed by primer-template perfect annealing(PTPA),while background genotyping employs PTMA.Unlike DNA arrays,multiple PCR,or genome target enrichments,FBI-seq requires little preliminary work for primer design and synthesis,and it is easily adaptable to different foreground genes and species.FBI-seq therefore provides a prolific,robust,and accurate method for simultaneous foreground and background genotyping to facilitate breeding in the postgenomics era.