期刊文献+
共找到2,223篇文章
< 1 2 112 >
每页显示 20 50 100
Functional cartography of heterogeneous combat networks using operational chain-based label propagation algorithm
1
作者 CHEN Kebin JIANG Xuping +2 位作者 ZENG Guangjun YANG Wenjing ZHENG Xue 《Journal of Systems Engineering and Electronics》 2025年第5期1202-1215,共14页
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra... To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning. 展开更多
关键词 functional cartography heterogeneous combat network functional module label propagation algorithm operational chain
在线阅读 下载PDF
Propagation characteristics of stress waves induced by underground blasting under the influence of rock-soil interfaces
2
作者 Xianzhong Meng Chuanbo Zhou +3 位作者 Nan Jiang Zhen Zhang Yumin Yang Di Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4139-4159,共21页
The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil ... The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil interface,making propagation laws difficult to predict.Currently,the characteristics of the impact of the rock-soil interface on blasting stress waves remain unclear.Therefore,the vibration field caused by cylindrical charge blasting in elastic rock and partial-saturation poro-viscoelastic soil was solved.A forward algorithm for the underground blasting vibration field in rock-soil sites was proposed,considering medium damping and geometric diffusion effects of stress waves.Further investigation into the influence of rock and soil parameters and blasting source parameters revealed the following conclusions:stress waves in soil exhibit dispersion,causing peak particle velocity(PPV)to display a discrete distribution.Soil parameters affect PPV attenuation only within the soil,while blasting source parameters affect PPV attenuation throughout the entire site.Multi-wave coupling effects induced by the rocksoil interface result in zones of enhanced and attenuated PPV within the site.The size of the enhancement zone is inversely correlated with the distance from the blasting source and positively correlated with the blasting source attenuation rate and burial depth,providing guidance for selecting explosives and blasting positions.Additionally,PPV attenuation rate increases with distance from the rock-soil interface,but an amplification effect occurs near the interface,most noticeable at 0.1 m.Thus,a sufficient safety distance from the rock-soil interface is necessary during underground blasting. 展开更多
关键词 Underground blasting Rock-soil interface Blasting stress wave propagation characteristic Forward algorithm
在线阅读 下载PDF
3D numerical manifold method for crack propagation in rock materials using a local tracking algorithm
3
作者 Boyi Su Tao Xu +3 位作者 Genhua Shi Michael J.Heap Xianyang Yu Guanglei Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3449-3463,共15页
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater... The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials. 展开更多
关键词 3D numerical manifold method(3D NMM) Crack propagation Local tracking algorithm Brittle materials
在线阅读 下载PDF
Actuator Fault Diagnosis of 3-PR(P)S Parallel Robot Based on Dung Beetle Optimization-Back Propagation Neural Network
4
作者 Junjie Huang Chenhao Huangfu +3 位作者 Qinlei Zhang Shikai Li Yonggang Yan Jiangkun Cai 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第2期91-100,共10页
Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying t... Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot. 展开更多
关键词 ACTUATOR Back propagation neural network Dung Beetle algorithm fault diagnosis 3-PR(P)S parallel robot
在线阅读 下载PDF
Optimization of Process Parameters for Cracking Prevention of UHSS in Hot Stamping Based on Hammersley Sequence Sampling and Back Propagation Neural Network-Genetic Algorithm Mixed Methods 被引量:1
5
作者 menghan wang zongmin yue lie meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第2期31-39,共9页
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B... In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible. 展开更多
关键词 HOT STAMPING CRACKING Hammersley SEQUENCE sampling BACK-propagation GENETIC algorithm
在线阅读 下载PDF
A Third-Order Accurate Wave Propagation Algorithm for Hyperbolic Partial Differential Equations
6
作者 Christiane Helzel 《Communications on Applied Mathematics and Computation》 2020年第3期403-427,共25页
We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the... We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter. 展开更多
关键词 Wave propagation algorithm Hyperbolic partial differential equations Third-order accuracy
在线阅读 下载PDF
分组衰落信道下LDPC的一种带信道估计的改进Belief-Propagation算法
7
作者 邓建民 尹长川 +1 位作者 纪红 乐光新 《电子与信息学报》 EI CSCD 北大核心 2005年第4期519-522,共4页
该文首先通过仿真证明了LDPC(Low Density Parity Check code)在分组衰落信道下,以通常的 Belief-propagation算法译码,具有较好性能。然后基于算法的特殊迭代特性,提出分组衰落信道下,在每一迭代步 骤中结合信道估计的改进的Belief-pro... 该文首先通过仿真证明了LDPC(Low Density Parity Check code)在分组衰落信道下,以通常的 Belief-propagation算法译码,具有较好性能。然后基于算法的特殊迭代特性,提出分组衰落信道下,在每一迭代步 骤中结合信道估计的改进的Belief-propagation算法。仿真证明,该算法可以有效地减少译码迭代次数。 展开更多
关键词 LDPC 信道估计 改进的Belief-propagation算法
在线阅读 下载PDF
Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China 被引量:5
8
作者 Lin Chen Weibing Lin +3 位作者 Ping Chen Shu Jiang Lu Liu Haiyan Hu 《Journal of Earth Science》 SCIE CAS CSCD 2021年第4期828-838,共11页
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import... A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area. 展开更多
关键词 porosity prediction well logs back propagation neural network genetic algorithm Ordos Basin Yanchang Formation
原文传递
Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression 被引量:10
9
作者 Amin Manouchehrian Mohammad Fatehi Marji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1389-1397,共9页
In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many... In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms. 展开更多
关键词 Crack propagation CONFINEMENT Bonded par-ticle model - Rock Secondary cracks
在线阅读 下载PDF
Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method 被引量:1
10
作者 肖金标 孙小菡 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1824-1830,共7页
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ... A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method. 展开更多
关键词 beam propagation method alternating direction implicit algorithm finite difference optical waveguides integrated optics
原文传递
Reliability analysis of k-out-of-n system with load-sharing and failure propagation effect 被引量:1
11
作者 CHEN Ying MA Qichao +1 位作者 WANG Ze LI Yingyi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1221-1231,共11页
In complex systems,functional dependency and physical dependency may have a coupling effect.In this paper,the reliability of a k-out-of-n system is analyzed considering load-sharing effect and failure mechanism(FM)pro... In complex systems,functional dependency and physical dependency may have a coupling effect.In this paper,the reliability of a k-out-of-n system is analyzed considering load-sharing effect and failure mechanism(FM)propagation.Three types of FMs are considered and an accumulative damage model is proposed to illustrate the system behavior of the k-out-of-n system and the coupling effect between load-sharing effect and FM propagation effect.A combinational algorithm based on Binary decision diagram(BDD)and Monte-Carlo simulation is presented to evaluate the complex system behavior and reliability of the k-out-of-n system.A current stabilizing system that consists of a 3-out-of-6 subsystem with FM propagation effect is presented as a case to illustrate the complex behavior and to verify the applicability of the proposed method.Due to the coupling effect change,the main mechanism and failure mode will be changed,and the system lifetime is shortened.Reasons are analyzed and results show that different sensitivity factors of three different FMs lead to the change of the development rate,thus changing the failure scenario.Neglecting the coupling effect may lead to an incomplete and ineffective measuring and monitoring plan.Design strategies must be adopted to make the FM propagation insensitive to load-sharing effect. 展开更多
关键词 k-out-of-n system load-sharing effect failure mechanism propagation damage factor model combinational algorithm
在线阅读 下载PDF
A Method for Solving Computer-Aided Product Design Optimization Problem Based on Back Propagation Neural Network 被引量:1
12
作者 周祥 何小荣 陈丙珍 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期510-514,共5页
Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to... Because of the powerful mapping ability, back propagation neural network (BP-NN) has been employed in computer-aided product design (CAPD) to establish the property prediction model. The backward problem in CAPD is to search for the appropriate structure or composition of the product with desired property, which is an optimization problem. In this paper, a global optimization method of using the a BB algorithm to solve the backward problem is presented. In particular, a convex lower bounding function is constructed for the objective function formulated with BP-NN model, and the calculation of the key parameter a is implemented by recurring to the interval Hessian matrix of the objective function. Two case studies involving the design of dopamine β-hydroxylase (DβH) inhibitors and linear low density polyethylene (LLDPE) nano composites are investigated using the proposed method. 展开更多
关键词 computer-aided product design (CAPD) back propagation neural network (BP-NN) a BB algorithm convex lower bounding function interval Hessian matrix
在线阅读 下载PDF
Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system 被引量:2
13
作者 李军 刘君华 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第1期14-17,共4页
Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n... Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output. 展开更多
关键词 SENSOR inverse modeling fuzzy logical system back-propagation algorithm
在线阅读 下载PDF
Dose-Injury Relation as a Model for Uncertainty Propagation from Input Dose to Target Dose 被引量:1
14
作者 Hongyun Wang Wesley A. Burgei Hong Zhou 《American Journal of Operations Research》 2018年第5期360-385,共26页
We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is ... We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application. 展开更多
关键词 DOSE INJURY RELATION DOSE propagation Uncertainty MEDIAN INJURY DOSE 10 - 90 Percentile Width SKEWNESS Mapping INJURY MODEL from One Population to Another
暂未订购
Age and Gender Classification Using Backpropagation and Bagging Algorithms
15
作者 Ammar Almomani Mohammed Alweshah +6 位作者 Waleed Alomoush Mohammad Alauthman Aseel Jabai Anwar Abbass Ghufran Hamad Meral Abdalla Brij B.Gupta 《Computers, Materials & Continua》 SCIE EI 2023年第2期3045-3062,共18页
Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ... Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%. 展开更多
关键词 Classify voice gender ACCENT age bagging algorithms back propagation algorithms AI classifiers
在线阅读 下载PDF
Deep learning-driven interval uncertainty propagation for aeronautical structures
16
作者 Yan SHI Michael BEER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期71-86,共16页
Interval Uncertainty Propagation(IUP)holds significant importance in quantifying uncertainties in structural outputs when confronted with interval input parameters.In the aviation field,the precise determination of pr... Interval Uncertainty Propagation(IUP)holds significant importance in quantifying uncertainties in structural outputs when confronted with interval input parameters.In the aviation field,the precise determination of probability models for input parameters of aeronautical structures entails substantial costs in both time and finances.As an alternative,the use of interval variables to describe input parameter uncertainty becomes a pragmatic approach.The complex task of solving the IUP for aeronautical structures,particularly in scenarios marked by pronounced nonlinearity and multiple outputs,necessitates innovative methodologies.This study introduces an efficient deep learning-driven approach to address the challenges associated with IUP.The proposed approach combines the Deep Neural Network(DNN)with intelligent optimization algorithms for dealing with the IUP in aeronautical structures.An inventive extremal value-oriented weighting technique is presented,assigning varying weights to different training samples within the loss function,thereby enhancing the computational accuracy of the DNN in predicting extremal values of structural outputs.Moreover,an adaptive framework is established to strategically balance the global exploration and local exploitation capabilities of the DNN,resulting in a predictive model that is both robust and accurate.To illustrate the effectiveness of the developed approach,various applications are explored,including a high-dimensional numerical example and two aeronautical structures.The obtained results highlight the high computational accuracy and efficiency achieved by the proposed approach,showcasing its potential for addressing complex IUP challenges in aeronautical engineering. 展开更多
关键词 Uncertainty propagation Interval variable Deep learning Optimization algorithm Aeronautical structure
原文传递
Improving the accuracy of heart disease diagnosis with an augmented back propagation algorithm
17
作者 颜红梅 《Journal of Chongqing University》 CAS 2003年第1期31-34,共4页
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ... A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis. 展开更多
关键词 multilayer perceptron back propagation algorithm heart disease momentum term adaptive learning rate the forgetting mechanics conjugate gradients method
暂未订购
在多层神经网络中用Back-Propagation算法进行方位角估测
18
作者 胡子建 《江西大学学报(自然科学版)》 1990年第4期51-58,共8页
本文介绍了多层神经网络的基本结构和主要概念,并对训练多层神经网络的Back-Propagation学习算法(即后向传递误差算法,简称后向算法)的原理和实施步骤作了详尽的分析和推导。在多层神经网络中运用这一算法,提出了平面波方位角估测的新... 本文介绍了多层神经网络的基本结构和主要概念,并对训练多层神经网络的Back-Propagation学习算法(即后向传递误差算法,简称后向算法)的原理和实施步骤作了详尽的分析和推导。在多层神经网络中运用这一算法,提出了平面波方位角估测的新方法。计算机模拟结果显示,这一方法是可行的。 展开更多
关键词 神经网络 后向算法 方位角
在线阅读 下载PDF
Development of a Post Quantum Encryption Key Generation Algorithm Using Electromagnetic Wave Propagation Theory
19
作者 Vincent Mbonigaba Fulgence Nahayo +1 位作者 Octave Moutsinga Okalas-Ossami Dieudonné 《Journal of Information Security》 2024年第1期53-62,共10页
In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco... In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys. 展开更多
关键词 KEY Wave ELECTROMAGNETIC CRYPTOGRAPHY POST Quantum Network Protocol propagation algorithm
在线阅读 下载PDF
Development of tomographic reconstruction for three-dimensional optical imaging:From the inversion of light propagation to artificial intelligence
20
作者 Xin Cao Kang Li +3 位作者 Xue-Li Xu Karen M von Deneen Guo-Hua Geng Xue-Li Chen 《Artificial Intelligence in Medical Imaging》 2020年第2期78-86,共9页
Optical molecular tomography(OMT)is an imaging modality which uses an optical signal,especially near-infrared light,to reconstruct the three-dimensional information of the light source in biological tissue.With the ad... Optical molecular tomography(OMT)is an imaging modality which uses an optical signal,especially near-infrared light,to reconstruct the three-dimensional information of the light source in biological tissue.With the advantages of being low-cost,noninvasive and having high sensitivity,OMT has been applied in preclinical and clinical research.However,due to its serious ill-posedness and illcondition,the solution of OMT requires heavy data analysis and the reconstruction quality is limited.Recently,the artificial intelligence(commonly known as AI)-based methods have been proposed to provide a different tool to solve the OMT problem.In this paper,we review the progress on OMT algorithms,from conventional methods to AI-based methods,and we also give a prospective towards future developments in this domain. 展开更多
关键词 Optical molecular tomography Deep learning Artificial intelligence Light propagation based algorithm Tomographic reconstruction
暂未订购
上一页 1 2 112 下一页 到第
使用帮助 返回顶部