期刊文献+
共找到26,047篇文章
< 1 2 250 >
每页显示 20 50 100
The Application of BP Networks to Land Suitability Evaluation 被引量:14
1
作者 LIU Yanfang JIAO Limin 《Geo-Spatial Information Science》 2002年第1期55-61,共7页
The back propagation (BP) model of artificial neural networks (ANN) has many good qualities comparing with ordinary methods in land suitability evaluation.Through analyzing ordinary methods’ limitations,some sticking... The back propagation (BP) model of artificial neural networks (ANN) has many good qualities comparing with ordinary methods in land suitability evaluation.Through analyzing ordinary methods’ limitations,some sticking points of BP model used in land evaluation,such as network structure,learning algorithm,etc.,are discussed in detail,The land evaluation of Qionghai city is used as a case study.Fuzzy comprehensive assessment method was also employed in this evaluation for validating and comparing. 展开更多
关键词 ANN bp networks bp algorithm land suitability evaluation
在线阅读 下载PDF
Prediction of Hot Ductility of Low-Carbon Steels Based on BP Network 被引量:3
2
作者 Xinyu Liu, Bo Wen, Xinhua Wang, Qiang Niu, Hong Chen Key Lab of New Packaging Materials & Technology of China National Packaging Corporation, Zhuzhou Engineering College, 412008, China University of Science & Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第3期182-184,共3页
The purpose of the research is to obtain an effective method to predict the hot ductility of low-carbon steels, which will be a reference to evaluate the crack sensitivity of steels. Several sub-networks modeled from ... The purpose of the research is to obtain an effective method to predict the hot ductility of low-carbon steels, which will be a reference to evaluate the crack sensitivity of steels. Several sub-networks modeled from BP network were constructed for different temperature use, and the measured reduction of area (A(R)) of 12 kinds of low-carbon steels under the temperature of 600 to 1000 degreesC were processed as training samples. The result of software simulation shows that the model established is relatively effective for predicting the hot ductility of steels. 展开更多
关键词 bp network hot ductility crack sensitivity
在线阅读 下载PDF
Classification of Infrared Monitor Images of Coal Using an Feature Texture Statistics and Improved BP Network 被引量:2
3
作者 SUN Ji-ping CHEN Wei +3 位作者 MA Feng-ying WANG Fu-zeng TANG Liang LIU Yan-jie 《Journal of China University of Mining and Technology》 EI 2007年第4期489-493,共5页
It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the ro... It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine. Texture statistics from the grey level dependence matrix were selected as the criterion for classification. The distributions of the texture statistics were calculated and analysed. A normalizing function was added to the front end of the BP network with one hidden layer. An additional classification layer is joined behind the linear layer. The recognition of pulverized from block coal images was tested using the improved BP network. The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image. The innovative improved BP network can then recognize the pulverized and block coal images. 展开更多
关键词 pulverized-coal-image block-coal-image gray level dependence matrix improved bp networks
在线阅读 下载PDF
Performance of Feedback BP Networks 被引量:1
4
作者 Luo Siwei Yang Wujie & Zhang Aijun(Dept. of Computer Science & Technology. Northern Jiaotong University, Beijing 100044, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第3期11-18,共8页
Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this pape... Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this paper, we analyze the two networks: feedback BP network and Hopfiled network andcompare the property between them. The conclusion shows that feedback BP network has more powerfulassociation memorizing ability than Hopfiled network. 展开更多
关键词 Neural network ALGORITHM bp network
在线阅读 下载PDF
Real-time multi-step prediction control for BP network with delay 被引量:8
5
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction bp network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
在线阅读 下载PDF
The applying of BP network in forecasting the demand and its growth rate for coal 被引量:4
6
作者 纪成君 刘宏超 《Journal of Coal Science & Engineering(China)》 2001年第1期102-107,共6页
Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
关键词 the quantity of coal consuming the growth rate of consuming bp neuron network forecasting
在线阅读 下载PDF
Optimization of Injection Molding Process of Bearing Stand Based on BP Network Method 被引量:1
7
作者 虞俊波 周小林 +2 位作者 邓常乐 刘军 王骥 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期180-185,共6页
The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.T... The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.The warpage is one of main defects of injection products,which cost much time and materials.In order to minimize warpage to ensure the precise shape of molded parts,it needs to combine design,service conditions,process parameters,material properties,and other factors in the design and manufacturing.Finite element tools and material database are used to analyze the occurrence of warpage,and analysis results contribute to the improvement and optimization of injection molding process of typical parts.To find the optimal process parameters in the solution space,experimental data are used to establish backpropagation(BP)network for predicting warpage of a bearing stand based on analysis with Moldflow.With a proper transfer function and the BP network architecture,results from the BP network method satisfiy the criteria of accuracy.The optimal solutions are searched in the BP network by the genetic algorithm with the finding that the optimization method based on the BP network is efficient. 展开更多
关键词 injection molding orthogonal test MOLDFLOW bp neural network warpage deflection
在线阅读 下载PDF
MENDED GENETIC BP NETWORK AND APPLICATION TO ROLLING FORCE PREDICTION OF 4-STAND TANDEM COLD STRIP MILL 被引量:3
8
作者 ZhangDazhi SunYikang +1 位作者 WangYanping CaiHengjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期297-300,共4页
In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a p... In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained. 展开更多
关键词 Genetic algorithms bp algorithms Neural network Tandem cold strip mill Rolling force prediction
在线阅读 下载PDF
Forecasting Loss of Ecosystem Service Value Using a BP Network: A Case Study of the Impact of the South-to-north Water Transfer Project on the Ecological Environmental in Xiangfan, Hubei Province, China 被引量:1
9
作者 YUN-FENG CHEN, JING-XUAN ZHOU, JIE XIAO, AND YAN-PING LIEnvironmental Science and Engineering College, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第4期379-391,共13页
Objective To recognize and assess the impact of the South-to-north Water Transfer Project (SNWTP) on the ecological environment of Xiangfan, Hubei Province, situated in the water-out area, and develop sound scientific... Objective To recognize and assess the impact of the South-to-north Water Transfer Project (SNWTP) on the ecological environment of Xiangfan, Hubei Province, situated in the water-out area, and develop sound scientific countermeasures. Methods A three-layer BP network was built to simulate topology and process of the eco-economy system of Xiangfan. Historical data of ecological environmental factors and socio-economic factors as inputs, and corresponding historical data of ecosystem service value (ESV) and GDP as target outputs, were presented to train and test the network. When predicted input data after 2001 were presented to trained network as generalization sets, ESVs and GDPs of 2002, 2003, 2004... till 2050 were simulated as output in succession. Results Up to 2050, the area would have suffered an accumulative total ESV loss of RMB 104.9 billion, which accounted for 37.36% of the present ESV. The coinstantaneous GDP would change asynchronously with ESV, it would go through an up-to-down process and finally lose RMB89.3 billion, which accounted for 18.71% of 2001. Conclusions The simulation indicates that ESV loss means damage to the capability of socio-economic sustainable development, and suggests that artificial neural networks (ANNs) provide a feasible and effective method and have an important potential in ESV modeling. 展开更多
关键词 Artificial neural network bp Ecosystem service value South-to-north Water Transfer Project
在线阅读 下载PDF
Application of genetic BP network to discriminating earthquakes and explosions
10
作者 BIAN Yin-ju(边银菊) 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第5期540-549,共10页
We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algori... We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algorithm and the genetic BP neural network based on the GA-BP algorithm to discriminate earthquakes and explosions. The obtained result shows that the discriminating performance of the genetic BP network is slightly better than that of the BP network. 展开更多
关键词 artificial neural network bp algorithm genetic algorithm
在线阅读 下载PDF
Utilizing BP neural networks to accurately reconstruct the tritium depth profile in materials for BIXS
11
作者 Chen Zhao Wei Jin +2 位作者 Yan Shi Chang-An Chen Yi-Ying Zhao 《Nuclear Science and Techniques》 2025年第1期103-114,共12页
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem... β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection. 展开更多
关键词 β-ray-induced X-ray spectroscopy Tritium detection bp network Ridge regression Reconstruction problem
在线阅读 下载PDF
The model-free adaptive control method based on BP networks and LSTM neural network optimisation
12
作者 Zengxi Feng Weipeng Xiang +1 位作者 Gangting Li Wenjing Wang 《Journal of Control and Decision》 2025年第6期1156-1166,共11页
When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting cont... When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting control performance.To address this,this paper proposes a modelfree adaptive control method based on BP networks and LSTM neural network optimization for a class of discrete-time nonlinear systems.The method uses a BP neural network to fit the controlled system and an LSTM to fit the output of the controlled system to the biased derivatives of the inputs,bypassing the estimation of the(k)value to avoid estimation errors.The stability of this method is derived and proved,and its effectiveness and feasibility are verified using both reversible and irreversible systems.Results show that this method achieves higher accuracy in control performance. 展开更多
关键词 bp neural network model-free adaptive control LSTM optimisation
原文传递
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
13
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
在线阅读 下载PDF
Study on the Model of Excessive Staminate Catkin Thinning of Proterandrous Walnut Based on Quadratic Polynomial Regression Equation and BP Artificial Neural Network 被引量:1
14
作者 王贤萍 曹贵寿 +4 位作者 杨晓华 张倩茹 李凯 李鸿雁 段泽敏 《Agricultural Science & Technology》 CAS 2015年第6期1295-1300,共6页
The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quad... The excessive staminate catkin thinning (emasculation) of proterandrous walnut is an important management measure for improving yield. To improve the excessive staminate catkin thinning efficiency, the model of quadratic polynomial regression equation and BP artificial neural network was developed. The effects of ethephon, gibberel in and mepiquat on shedding rate of staminate catkin of pro-terandrous walnut were investigated by modeling field test. Based on the modeling test results, the excessive staminate catkin thinning model of quadratic polynomial regression equation and BP artificial neural network was established, and it was validated by field test next year. The test data were divided into training set, vali-dation set and test set. The total 20 sets of data obtained from the modeling field test were randomly divided into training set (17) and validation set (3) by central composite design (quadric rotational regression test design), and the data obtained from the next-year field test were divided into the test set. The topological struc-ture of BP artificial neural network was 3-5-1. The results showed that the pre-diction errors of BP neural network for samples from the validation set were 1.355 0%, 0.429 1% and 0.353 8%, respectively; the difference between the predicted value by the BP neural network and validated value by field test was 2.04%, and the difference between the predicted value by the regression equation and validated value by field test was 3.12%; the prediction accuracy of BP neural network was over 1.0% higher than that of regression equation. The effective combination of quadratic polynomial stepwise regression and BP artificial neural network wil not only help to determine the effect of independent parameter but also improve the prediction accuracy. 展开更多
关键词 WALNUT THINNING bp artificial neural network Regression PREDICTION
在线阅读 下载PDF
Seabed Classification Using BP Neural Network Based on GA 被引量:3
15
作者 Yang Fanin Liu Jingnan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2003年第4期523-531,共9页
Side scan sonar imaging is one of the advanced methods for seabed study.In order to be utilized in other projects,such as ocean engineering,the image needs to be classified according to the distributions of different ... Side scan sonar imaging is one of the advanced methods for seabed study.In order to be utilized in other projects,such as ocean engineering,the image needs to be classified according to the distributions of different classes of seabed materials.In this paper,seabed image is classified according to BP neural network,and.Genetic Algorithm is adopted in train network in this paper.The feature vectors are average intensity,six statistics of texture and two dimensions of fractal.It considers not only the spatial correlation between different pixels,but also the terrain coarseness.The texture is denoted by the statistics of the co-occurrence matrix.Double Blanket algorithm is used to calculate dimension.Because a uniform fractal may not be sufficient to describe a seafloor,two dimensions are calculated respectively by the upper blanket and the lower blanket.However,in sonar image,fractal has directivity,i.e.there are different dimensions in different direction.Dimensions are different in acrosstrack and alongtrack,so the average of four directions is used to solve this problem.Finally,the real data verify the algorithm.In this paper,one hidden layer including six nodes is adopted.The BP network is rapidly and accurately convergent through GA.Correct classification rate is 92.5%in the result. 展开更多
关键词 bp network co-occurrence matrix FRACTAL CLASSIFICATION genetic algorithin
在线阅读 下载PDF
An exploration of the uncertainty relation satisfied by BP network learning ability and generalization ability 被引量:3
16
作者 LIZuoyong PENGLihong 《Science in China(Series F)》 2004年第2期137-150,共14页
This paper analyses the intrinsic relationship between the BP network learning ability and generalization ability and other influencing factors when the overfit occurs, and introduces the multiple correlation coeffici... This paper analyses the intrinsic relationship between the BP network learning ability and generalization ability and other influencing factors when the overfit occurs, and introduces the multiple correlation coefficient to describe the complexity of samples; it follows the calculation uncertainty principle and the minimum principle of neural network structural design, provides an analogy of the general uncertainty relation in the information transfer process, and ascertains the uncertainty relation between the training relative error of the training sample set, which reflects the network learning ability, and the test relative error of the test sample set, which represents the network generalization ability; through the simulation of BP network overfit numerical modeling test with different types of functions, it is ascertained that the overfit parameter q in the relation generally has a span of 7×10-3 to 7×10-2; the uncertainty relation then helps to obtain the formula for calculating the number of hidden nodes of a network with good generalization ability under the condition that multiple correlation coefficient is used to describe sample complexity and the given approximation error requirement is satisfied; the rationality of this formula is verified; this paper also points out that applying the BP network to the training process of the given sample set is the best method for stopping training that improves the generalization ability. 展开更多
关键词 bp network learning ability generalization ability overfit relation network structure optimiza-tion.
原文传递
The Applicative Investigation of Adaptive BP Networks for Multi-user Detection in Asynchronous DS-CDMA Mobile Communications 被引量:2
17
作者 NI Liang-fang, ZHENG Bao-yu, WU Xin-yu (Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China) 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2003年第1期1-8,14,共9页
Three-layer Adaptive Back-Propagation Neural Networks(TABPNN) are employed for the demodulation of spread spectrum signals in a multiple-access environment. A configuration employing three-layer adaptive Back-propagat... Three-layer Adaptive Back-Propagation Neural Networks(TABPNN) are employed for the demodulation of spread spectrum signals in a multiple-access environment. A configuration employing three-layer adaptive Back-propagation neural networks is put forward for the demodulation of spread-spectrum signals in asynchronous Gaussian channels. The theoretical arguments and practical performance based on the neural networks are analyzed. The results show that whether the resistance to the multiple access interference or the robust to near-far effects, the proposed detector significantly outperforms not only the conventional detector but also the BP neural networks detector and is comparable to the optimum detector. 展开更多
关键词 code division multiple access multi-user detection adaptive bp networks
原文传递
Quantitative Detection Model of Pernicious Gases in Pig House Based on BP Neural Network
18
作者 俞守华 张洁芳 区晶莹 《Animal Husbandry and Feed Science》 CAS 2009年第3期40-43,48,共5页
To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagatio... To find a neural network model suitable to identify the concentration of mixed pernicious gases in pig house, the quantitative detection model of pernicious gases in pig house was set up based on BP ( Back propagation) neural network. The BP neural network was trained separately by the three functions, trainbr, traingdm and trainlm, in order to identify the concentration of mixed pernicious gases composed of ammonia gas and hepatic gas. The neural network toolbox in MATLAB software was used to simulate the detection. The results showed that the neural network trained by trainbr function has high average identification accuracy and faster detection speed, and it is also insensitive to noise; therefore, it is suitable to identify the concentration of pemidous gases in pig house. These data provide a reference for intelligent monitoring of pemicious gases in pigsty. 展开更多
关键词 bp neural network pig house -Quantitative detection of gas
在线阅读 下载PDF
Prediction of Injection-Production Ratio with BP Neural Network
19
作者 袁爱武 郑晓松 王东城 《Petroleum Science》 SCIE CAS CSCD 2004年第4期62-65,共4页
Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First... Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio. 展开更多
关键词 Injection-production ratio (IPR) bp neural network gray theory PREDICTION
原文传递
基于BP神经网络的江苏省多维度碳排放预测 被引量:3
20
作者 郑琰 夏朝泽 +2 位作者 肖玉杰 王杰 余伟 《环境科学》 北大核心 2025年第6期3485-3495,共11页
“双碳”目标下,推进节能减排是经济高质量发展的关键.通过创新提出在多维度视角下对江苏省的碳排放量进行影响因素分析和预测,针对性给出降低碳排放的策略.基于STRIPAT扩展模型和LMDI模型,构建江苏省碳排放量影响因素指标体系,多维度... “双碳”目标下,推进节能减排是经济高质量发展的关键.通过创新提出在多维度视角下对江苏省的碳排放量进行影响因素分析和预测,针对性给出降低碳排放的策略.基于STRIPAT扩展模型和LMDI模型,构建江苏省碳排放量影响因素指标体系,多维度分析不同指标因素对碳排放量的影响.运用岭回归和因子分析方法,得到碳排放量与各指标间的关联度和贡献率,采用BP神经网络算法对江苏省碳排放量进行预测.结果表明,江苏省碳排放量影响因素程度排名为:能源消耗量、GDP、人口、第三产业增加值占比、能耗结构、第二产业增加值占比和第一产业增加值占比.其中第一产业增加值占比和第二产业增加值占比这两个因素对碳排放量的增长起到了抑制作用,其余因素均为促进作用.同时根据预测结果,江苏省应当在2025~2035年间调整产业和能源结构,将非化石能源占比增至30%,单位CO_(2)排放下降28.6%,实现碳达峰.在2050年前后,将非化石能源占比提高到50%,单位能耗下降46.1%,则CO_(2)排放进入快速下降阶段.最终,在2060年前后将非化石能源占比超过80%,单位能耗下降54.6%,CO_(2)排放减少77.9%,达到碳中和. 展开更多
关键词 碳排放量影响因素 多维度 LMDI模型 岭回归 bp神经网络
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部