期刊文献+
共找到26,175篇文章
< 1 2 250 >
每页显示 20 50 100
The Application of BP Networks to Land Suitability Evaluation 被引量:14
1
作者 LIU Yanfang JIAO Limin 《Geo-Spatial Information Science》 2002年第1期55-61,共7页
The back propagation (BP) model of artificial neural networks (ANN) has many good qualities comparing with ordinary methods in land suitability evaluation.Through analyzing ordinary methods’ limitations,some sticking... The back propagation (BP) model of artificial neural networks (ANN) has many good qualities comparing with ordinary methods in land suitability evaluation.Through analyzing ordinary methods’ limitations,some sticking points of BP model used in land evaluation,such as network structure,learning algorithm,etc.,are discussed in detail,The land evaluation of Qionghai city is used as a case study.Fuzzy comprehensive assessment method was also employed in this evaluation for validating and comparing. 展开更多
关键词 ANN bp networks bp algorithm land suitability evaluation
在线阅读 下载PDF
Prediction of Hot Ductility of Low-Carbon Steels Based on BP Network 被引量:3
2
作者 Xinyu Liu, Bo Wen, Xinhua Wang, Qiang Niu, Hong Chen Key Lab of New Packaging Materials & Technology of China National Packaging Corporation, Zhuzhou Engineering College, 412008, China University of Science & Technology Beijing, Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第3期182-184,共3页
The purpose of the research is to obtain an effective method to predict the hot ductility of low-carbon steels, which will be a reference to evaluate the crack sensitivity of steels. Several sub-networks modeled from ... The purpose of the research is to obtain an effective method to predict the hot ductility of low-carbon steels, which will be a reference to evaluate the crack sensitivity of steels. Several sub-networks modeled from BP network were constructed for different temperature use, and the measured reduction of area (A(R)) of 12 kinds of low-carbon steels under the temperature of 600 to 1000 degreesC were processed as training samples. The result of software simulation shows that the model established is relatively effective for predicting the hot ductility of steels. 展开更多
关键词 bp network hot ductility crack sensitivity
在线阅读 下载PDF
Classification of Infrared Monitor Images of Coal Using an Feature Texture Statistics and Improved BP Network 被引量:2
3
作者 SUN Ji-ping CHEN Wei +3 位作者 MA Feng-ying WANG Fu-zeng TANG Liang LIU Yan-jie 《Journal of China University of Mining and Technology》 EI 2007年第4期489-493,共5页
It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the ro... It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system. Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine. Texture statistics from the grey level dependence matrix were selected as the criterion for classification. The distributions of the texture statistics were calculated and analysed. A normalizing function was added to the front end of the BP network with one hidden layer. An additional classification layer is joined behind the linear layer. The recognition of pulverized from block coal images was tested using the improved BP network. The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image. The innovative improved BP network can then recognize the pulverized and block coal images. 展开更多
关键词 pulverized-coal-image block-coal-image gray level dependence matrix improved bp networks
在线阅读 下载PDF
Performance of Feedback BP Networks 被引量:1
4
作者 Luo Siwei Yang Wujie & Zhang Aijun(Dept. of Computer Science & Technology. Northern Jiaotong University, Beijing 100044, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第3期11-18,共8页
Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this pape... Through adding feedbacks in multi-layer BP networks, the network performance is improvedconsiderably compared with general BP network and Hopfield network, particularly the associative memorizing ability. In this paper, we analyze the two networks: feedback BP network and Hopfiled network andcompare the property between them. The conclusion shows that feedback BP network has more powerfulassociation memorizing ability than Hopfiled network. 展开更多
关键词 Neural network ALGORITHM bp network
在线阅读 下载PDF
Real-time multi-step prediction control for BP network with delay 被引量:8
5
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction bp network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
在线阅读 下载PDF
The applying of BP network in forecasting the demand and its growth rate for coal 被引量:4
6
作者 纪成君 刘宏超 《Journal of Coal Science & Engineering(China)》 2001年第1期102-107,共6页
Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
关键词 the quantity of coal consuming the growth rate of consuming bp neuron network forecasting
在线阅读 下载PDF
Optimization of Injection Molding Process of Bearing Stand Based on BP Network Method 被引量:1
7
作者 虞俊波 周小林 +2 位作者 邓常乐 刘军 王骥 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第2期180-185,共6页
The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.T... The quality of injection plastic molded parts relates to precise geometry,smooth surface,strength,durability,and other indicators that are associated with the mold,materials,injection process,and service environment.The warpage is one of main defects of injection products,which cost much time and materials.In order to minimize warpage to ensure the precise shape of molded parts,it needs to combine design,service conditions,process parameters,material properties,and other factors in the design and manufacturing.Finite element tools and material database are used to analyze the occurrence of warpage,and analysis results contribute to the improvement and optimization of injection molding process of typical parts.To find the optimal process parameters in the solution space,experimental data are used to establish backpropagation(BP)network for predicting warpage of a bearing stand based on analysis with Moldflow.With a proper transfer function and the BP network architecture,results from the BP network method satisfiy the criteria of accuracy.The optimal solutions are searched in the BP network by the genetic algorithm with the finding that the optimization method based on the BP network is efficient. 展开更多
关键词 injection molding orthogonal test MOLDFLOW bp neural network warpage deflection
在线阅读 下载PDF
MENDED GENETIC BP NETWORK AND APPLICATION TO ROLLING FORCE PREDICTION OF 4-STAND TANDEM COLD STRIP MILL 被引量:3
8
作者 ZhangDazhi SunYikang +1 位作者 WangYanping CaiHengjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期297-300,共4页
In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a p... In order to make good use of the ability to approach any function of BP (backpropagation) network and overcome its local astringency, and also make good use of the overallsearch ability of GA (genetic algorithms), a proposal to regulate the network's weights using bothGA and BP algorithms is suggested. An integrated network system of MGA (mended genetic algorithms)and BP algorithms has been established. The MGA-BP network's functions consist of optimizing GAperformance parameters, the network's structural parameters, performance parameters, and regulatingthe network's weights using both GA and BP algorithms. Rolling forces of 4-stand tandem cold stripmill are predicted by the MGA-BP network, and good results are obtained. 展开更多
关键词 Genetic algorithms bp algorithms Neural network Tandem cold strip mill Rolling force prediction
在线阅读 下载PDF
Forecasting Loss of Ecosystem Service Value Using a BP Network: A Case Study of the Impact of the South-to-north Water Transfer Project on the Ecological Environmental in Xiangfan, Hubei Province, China 被引量:1
9
作者 YUN-FENG CHEN, JING-XUAN ZHOU, JIE XIAO, AND YAN-PING LIEnvironmental Science and Engineering College, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第4期379-391,共13页
Objective To recognize and assess the impact of the South-to-north Water Transfer Project (SNWTP) on the ecological environment of Xiangfan, Hubei Province, situated in the water-out area, and develop sound scientific... Objective To recognize and assess the impact of the South-to-north Water Transfer Project (SNWTP) on the ecological environment of Xiangfan, Hubei Province, situated in the water-out area, and develop sound scientific countermeasures. Methods A three-layer BP network was built to simulate topology and process of the eco-economy system of Xiangfan. Historical data of ecological environmental factors and socio-economic factors as inputs, and corresponding historical data of ecosystem service value (ESV) and GDP as target outputs, were presented to train and test the network. When predicted input data after 2001 were presented to trained network as generalization sets, ESVs and GDPs of 2002, 2003, 2004... till 2050 were simulated as output in succession. Results Up to 2050, the area would have suffered an accumulative total ESV loss of RMB 104.9 billion, which accounted for 37.36% of the present ESV. The coinstantaneous GDP would change asynchronously with ESV, it would go through an up-to-down process and finally lose RMB89.3 billion, which accounted for 18.71% of 2001. Conclusions The simulation indicates that ESV loss means damage to the capability of socio-economic sustainable development, and suggests that artificial neural networks (ANNs) provide a feasible and effective method and have an important potential in ESV modeling. 展开更多
关键词 Artificial neural network bp Ecosystem service value South-to-north Water Transfer Project
在线阅读 下载PDF
Application of genetic BP network to discriminating earthquakes and explosions
10
作者 BIAN Yin-ju(边银菊) 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第5期540-549,共10页
We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algori... We developed a GA-BP algorithm by combining the genetic algorithm (GA) with the back propagation (BP) algorithm and established a genetic BP neural network. We also applied the BP neural network based on the BP algorithm and the genetic BP neural network based on the GA-BP algorithm to discriminate earthquakes and explosions. The obtained result shows that the discriminating performance of the genetic BP network is slightly better than that of the BP network. 展开更多
关键词 artificial neural network bp algorithm genetic algorithm
在线阅读 下载PDF
Utilizing BP neural networks to accurately reconstruct the tritium depth profile in materials for BIXS
11
作者 Chen Zhao Wei Jin +2 位作者 Yan Shi Chang-An Chen Yi-Ying Zhao 《Nuclear Science and Techniques》 2025年第1期103-114,共12页
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem... β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection. 展开更多
关键词 β-ray-induced X-ray spectroscopy Tritium detection bp network Ridge regression Reconstruction problem
在线阅读 下载PDF
基于BP神经网络的成都砂卵石离散元模型细观参数标定研究
12
作者 袁胜洋 练小莲 +3 位作者 周伟星 李城栋 谷耀 刘先峰 《铁道学报》 北大核心 2026年第1期140-150,共11页
砂卵石土广泛分布于成都地区,受颗粒粒径限制,采用常规试验手段研究其力学特性时,耗时长且成本高。离散元数值试验是研究砂卵石力学特性的一有效手段,但颗粒间细观参数难以确定。基于砂卵石三轴试验,通过统计真实颗粒圆度和纵横比,采用... 砂卵石土广泛分布于成都地区,受颗粒粒径限制,采用常规试验手段研究其力学特性时,耗时长且成本高。离散元数值试验是研究砂卵石力学特性的一有效手段,但颗粒间细观参数难以确定。基于砂卵石三轴试验,通过统计真实颗粒圆度和纵横比,采用凸包法生成不规则颗粒,利用三维离散元软件构建考虑砂卵石颗粒形貌特征的数值模型。基于不同细观参数试算得到的25组数据建立神经网络,采用BP神经网络反演方式标定模型参数,分别采用莱文贝格-马夸特方法、贝叶斯正则化方法和量化共轭梯度法对数据进行训练。使用后验差分析法评估3种方法预测的模型数据精度。结果表明:使用贝叶斯正则化方法得出的预测参数精度最高,确定的砂卵石土颗粒法切向刚度比k、摩擦系数f分别为1.633、0.831;基于该细观参数,对不同细粒含量的砂卵石三轴试验进行模拟,模型数据和试验数据误差基本都在±10%以内,表明BP神经网络可用于砂卵石模型颗粒法切向刚度比和摩擦系数标定。 展开更多
关键词 砂卵石 不规则颗粒 三维离散元 bp神经网络 细观参数标定
在线阅读 下载PDF
基于GA-BP神经网络的碳纤维复合芯导线压接缺陷识别方法
13
作者 杜志叶 黄子韧 +2 位作者 俸波 岳国华 廖永力 《电工技术学报》 北大核心 2026年第1期315-328,共14页
碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出... 碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出一种碳纤维复合芯导线压接缺陷的漏磁检测信号缺陷特征提取方法。通过实验优化,以漏磁检测信号数据中7个峰值点的幅值、21个相对位置信息和7个波形类型信息作为缺陷判断特征值,有效地提高了缺陷种类和缺陷程度识别的准确度。对碳纤维芯导线进行磁性制备,并研制相对应的漏磁检测装置,生产106根不同类型、不同程度的碳纤维芯压接缺陷样品,得到613组漏磁检测信号数据并完成特征值提取,搭建基于遗传算法(GA)的反向传播(BP)神经网络。实测数据表明,该方法可以有效地完成对碳纤维复合芯导线压接缺陷类型的识别,同时对缺陷程度的识别准确率可达到94.31%。 展开更多
关键词 碳纤维复合芯导线 缺陷识别 磁性制备 漏磁检测 遗传算法 bp神经网络
在线阅读 下载PDF
基于SSA-BP神经网络的库区边坡变形时序预测研究
14
作者 武益民 张成良 张焕雄 《水电能源科学》 北大核心 2026年第1期177-181,共5页
针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网... 针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网络的初始权值和阈值进行全局优化,增强其收敛效率和适应性,并基于张家湾边坡历时5个月的真实位移监测数据进行训练。为验证模型优势,将SSA-BP模型与基于遗传算法(GA)和粒子群算法(PSO)优化的BP网络进行性能比对。研究表明,模型在24次迭代内快速收敛,显著优于对比模型,其均方根误差(RRMSE)、平均绝对百分比误差(M MAPE)、决定系数(R2)等评价指标均表现最佳。SSA-BP模型为库区边坡位移预测提供了一种可靠且高效的智能方法。 展开更多
关键词 库区边坡 位移变形预测 麻雀搜索算法(SSA) bp网络模型优化
原文传递
基于随机森林算法的BP神经网络模型在坝基渗压水位预测中的应用
15
作者 王卓群 王建新 +2 位作者 王惠民 盛金昌 冯俊 《人民黄河》 北大核心 2026年第1期150-154,共5页
为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短... 为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短期记忆网络)-BP模型,与RF-BP模型的预测精度进行对比。考虑到渗压水位与库水位存在一定的相关性,对两者的皮尔逊相关系数进行计算。结果表明:在OH-WML1-1、OH-WML1-2和OH-WML5-3典型测点,RF-BP模型的MAE、RMSE、MAPE最小,预测精度最高,这突出了随机森林算法在优化因子选择方面的显著效果。测点渗压水位与库水位相关性越强,RF-BP模型的预测精度越高,说明了渗压水位与库水位之间的相关性对预测准确性有重要影响。 展开更多
关键词 渗压水位 随机森林算法 bp神经网络 精度 白鹤滩水电站
在线阅读 下载PDF
面向Ni-SiC纳米镀层耐磨性能预测的GA-BP神经网络模型
16
作者 覃树宏 梁锦 《电镀与精饰》 北大核心 2026年第1期116-122,130,共8页
Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genet... Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genetic Algorithm-Backpropagation,GA-BP)神经网络模型,对Ni-SiC纳米镀层的耐磨性能预测方法展开研究。选用50 mm×50 mm×5 mm 304不锈钢板材作为基体材料进行预处理,使用电镀液配方对镀液进行配置;采用恒电流脉冲电镀模式完成复合电镀,并利用多功能摩擦磨损试验机进行耐磨性能试验;构建基于BP神经网络的Ni-SiC纳米镀层耐磨性能预测模型,并引入遗传算法对BP神经网络模型的阈值和权值展开寻优,将磨损量作为模型输出,实现Ni-SiC纳米镀层的耐磨性能预测。试验表明,利用本文方法获取的磨损量预测值与磨损量真实值之间的误差最大仅为0.2 mg,预测后的R^(2)为0.988,预测结果的拟合优度较高,应用效果较好。 展开更多
关键词 Ni-SiC纳米镀层 耐磨性能预测 GA算法 bp神经网络 摩擦磨损
在线阅读 下载PDF
基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统
17
作者 闵月淇 谢亮 《现代电子技术》 北大核心 2026年第2期49-53,共5页
硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采... 硅基光子器件的光损耗易受多种运行参数影响,导致其光损耗异常监测存在偏差或遗漏。为全面考虑多种运行参数的影响,实现对其光损耗异常的全面精准监测,设计一种基于PSO-BP神经网络的硅基光子器件光损耗异常监测系统。采用系统的数据采集模块实时采集硅基光子器件的波长、温度等运行参数,再通过数据预处理模块对各参数进行处理,并输入以PSO-BP神经网络为核心的光损耗检测模块,从而获得各种运行参数下的光损耗检测值。异常监测预警模块将所得光损耗检测值与设定阈值进行对比,判断光损耗是否异常,若异常则发出预警。用户交互模块呈现异常监测及预警信息,完成硅基光子器件光损耗异常监测。结果表明,所设计系统可针对不同波长、温度、波导长度及输出光功率等运行参数,实现对硅基光子器件光损耗异常的全面监测,并对各种异常光损耗场景进行有效预警。 展开更多
关键词 硅基光子器件 光损耗 异常监测 PSO-bp神经网络 异常预警 波导长度
在线阅读 下载PDF
基于PSO-BP神经网络的热电厂负荷预测策略研究
18
作者 胡旭 米欣 曹琦 《科技创新与应用》 2026年第1期32-35,共4页
目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进... 目前能源的高效利用和绿色发展受到学者们广泛的关注。该文针对某热电厂能源管理系统产生的大量历史数据,采用大数据分析的方法计算出数据之间的关联系数,以判断数据间的关联状况。建立PSO-BP神经网络模型对某热电厂未来24 h的热负荷进行预测,以便为热电厂更好地提供生产、运营、管理决策服务等。PSO-BP神经网络模型是将粒子群算法与BP算法融合产生的,不仅能够提高BP神经网络的预测精度,而且可以有效地解决BP神经网络算法学习速度慢及易陷入局部极小值、稳定性差等问题。 展开更多
关键词 大数据分析 用热特性 预测模型 PSO-bp神经网络 预测精度
在线阅读 下载PDF
The model-free adaptive control method based on BP networks and LSTM neural network optimisation
19
作者 Zengxi Feng Weipeng Xiang +1 位作者 Gangting Li Wenjing Wang 《Journal of Control and Decision》 2025年第6期1156-1166,共11页
When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting cont... When the controlled system is strongly nonlinear,the estimated pseudo partial derivatives in the general compact-format model-free adaptive control(CFDL-MFAC)may significantly deviate from actual values,affecting control performance.To address this,this paper proposes a modelfree adaptive control method based on BP networks and LSTM neural network optimization for a class of discrete-time nonlinear systems.The method uses a BP neural network to fit the controlled system and an LSTM to fit the output of the controlled system to the biased derivatives of the inputs,bypassing the estimation of the(k)value to avoid estimation errors.The stability of this method is derived and proved,and its effectiveness and feasibility are verified using both reversible and irreversible systems.Results show that this method achieves higher accuracy in control performance. 展开更多
关键词 bp neural network model-free adaptive control LSTM optimisation
原文传递
A method for predicting random vibration response of train-track-bridge system based on GA-BP neural network
20
作者 Jianfeng Mao Yun Zhang +2 位作者 Li Zheng Mansoor Khan Zhiwu Yu 《High-Speed Railway》 2025年第4期305-317,共13页
To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural netw... To enhance the efficiency of stochastic vibration analysis for the Train-Track-Bridge(TTB)coupled system,this paper proposes a prediction method based on a Genetic Algorithm-optimized Backpropagation(GA-BP)neural network.First,initial track irregularity samples and random parameter sets of the Vehicle-Bridge System(VBS)are generated using the stochastic harmonic function method.Then,the stochastic dynamic responses corresponding to the sample sets are calculated using a developed stochastic vibration analysis model of the TTB system.The track irregularity data and vehicle-bridge random parameters are used as input variables,while the corresponding stochastic responses serve as output variables for training the BP neural network to construct the prediction model.Subsequently,the Genetic Algorithm(GA)is applied to optimize the BP neural network by considering the randomness in excitation and parameters of the TTB system,improving model accuracy.After optimization,the trained GA-BP model enables rapid and accurate prediction of vehicle-bridge responses.To validate the proposed method,predictions of vehicle-bridge responses under varying train speeds are compared with numerical simulation results.The findings demonstrate that the proposed method offers notable advantages in predicting the stochastic vibration response of high-speed railway TTB coupled systems. 展开更多
关键词 Train-track-bridge system Genetic algorithm bp neural network Random response prediction Random parameters
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部