期刊文献+
共找到7,464篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved BP Algorithm and Its Application in Classification of Surface Defects of Steel Plate 被引量:4
1
作者 ZHAO Xiang-yang LAI Kang-sheng DAI Dong-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期52-55,共4页
Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural net... Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate. 展开更多
关键词 artificial neural network MLP bp algorithm SVD generalized inverse matrix
在线阅读 下载PDF
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
2
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 GA-bp算法 椒盐噪声 噪声检测 保边函数 PRP算法
在线阅读 下载PDF
Motion Control of Underwater Vehicle Based on Least Disturbance BP Algorithm 被引量:3
3
作者 LIU Xue-min, LIU Jian-cheng, XU Yu-ruCollege of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2002年第1期16-20,共5页
Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Thoug... Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine. 展开更多
关键词 bp algorithm of neural networks dynamic ratio least disturbance autonomous underwater vehicle
在线阅读 下载PDF
A serialized civil aircraft R&D cost estimation model considering commonality based on BP algorithm 被引量:1
4
作者 Yongjie ZHANG Kang CAO +2 位作者 Ke LIANG Yongqi ZENG Wenjun DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期253-265,共13页
The common design of serial civil aircraft, an important strategy of modern civil aircraft research and develop-ment, minimizes the whole life cycle cost of civil aircraft through asset reuse and resource sharing. How... The common design of serial civil aircraft, an important strategy of modern civil aircraft research and develop-ment, minimizes the whole life cycle cost of civil aircraft through asset reuse and resource sharing. However, the existing estimating model for the R&D cost of civil aircraft ignores the effects of common design, so the value estimated by estimating derivative models is significantly inconsistent with the actual one. To solve this problem, a novel assessment method for civil aircraft commonality indicators is developed based on fuzzy set in the present study, exploiting the attributes and structural parameters of the aircraft to be assessed as input to determine the degree of membership that pertains to the commonality sub-interval as the commonality indicator.Then the BP(Back Propagation) neural network algorithm is adopted to establish the relationship between the common index and the decrease rate of the R&D cost of derivative models. The model employs over a dozen typical civil aircraft models(e.g., Boeing, Airbus, and Bombardier) as the sample data for network learning training to build a mature neural network model for estimating the R&D cost of novel derivative models. As revealed from the comparative analysis on the calculated results of the samples, the estimated results of the model given the effects of commonality in the present study exhibit higher estimation accuracy and value for future work. 展开更多
关键词 bp algorithm Civil aircraft R&D cost Common indicators Fuzzy set Serialized civil aircraft
原文传递
Modeling of mechanical properties of as-cast Mg-Li-Al alloys based on PSO-BP algorithm 被引量:1
5
作者 Li Ming Hao Hai +3 位作者 Zhang Aimin Song Yingde Liu Zhao Zhang Xingguo 《China Foundry》 SCIE CAS 2012年第2期119-124,共6页
Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical pr... Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results. 展开更多
关键词 artificial neural networks Mg-Li-Al alloys bp algorithm particle swarm optimization mechanical properties
在线阅读 下载PDF
Nonlinear Inversion for Complex Resistivity Method Based on QPSO-BP Algorithm 被引量:1
6
作者 Weixin Zhang Jinsuo Liu +1 位作者 Le Yu Biao Jin 《Open Journal of Geology》 2021年第10期494-508,共15页
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff... The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters. 展开更多
关键词 Complex Resistivity Finite Element Method Nonlinear Inversion QPSO-bp algorithm 2.5D Numerical Simulation
在线阅读 下载PDF
Demarcation of potential seismic sources on integration of genetic algorithm and BP algorithm
7
作者 ZHOU Qing(周庆) +1 位作者 YE Hong(叶洪) 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第6期677-682,共6页
In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combinati... In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combination rapidly in an infinite solution space for artificial neural networks (ANN). The results show that the distribution of potential seismic sources with different upper magnitude demarcated by this classifier is mostly satisfied the intrinsic relationship between seismic environment and earthquake occurrence, with less effect from subjective judgment of human being. 展开更多
关键词 genetic algorithm bp algorithm potential seismic sources
在线阅读 下载PDF
Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data
8
作者 Baoling Qin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期255-267,共13页
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie... Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level. 展开更多
关键词 Medical big data IOT fog computing distributed computing bp algorithm model
在线阅读 下载PDF
The tool for building an NN based on improved BP algorithm
9
作者 冯玉强 潘启澍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第3期312-316,共5页
Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and loc... Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and local least often make it difficult for the non experts to use it widely, and an improved BP (IBP) algorithm is therefore suggested to expedite the convergence speed. The algorithm can judge local least and take some steps automatically to jump out from the local least. Furthermore, this algorithm introduces the expert knowledge base. An IBP based agile and current neural network (NN) constructed tool is designed. An initial NN can be constructed automatically using an expert knowledge base. And an Aitken’s Δ 2 process method is used to expedite the convergent speed for NN. Besides, the method of changing the parameter of Sigmoid function and increasing the hidden node is used to bring surge for NN to jump out from the local 展开更多
关键词 neural network (NN) bp algorithm
在线阅读 下载PDF
Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction 被引量:8
10
作者 YANG Yang LI Kai-yang 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期1-9,共9页
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines... The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%. 展开更多
关键词 bp algorithm GENETIC algorithm NEURAL network STRUCTURE classification Protein SECONDARY STRUCTURE prediction
暂未订购
Convergence of BP Algorithm for Training MLP with Linear Output
11
作者 Hongmei Shao Wei Wu Wenbin Liu 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第3期193-202,共10页
The capability of multilayer perceptrons(MLPs)for approximating continuous functions with arbitrary accuracy has been demonstrated in the past decades.Back propagation(BP)algorithm is the most popular learning algorit... The capability of multilayer perceptrons(MLPs)for approximating continuous functions with arbitrary accuracy has been demonstrated in the past decades.Back propagation(BP)algorithm is the most popular learning algorithm for training of MLPs.In this paper,a simple iteration formula is used to select the leaming rate for each cycle of training procedure,and a convergence result is presented for the BP algo- rithm for training MLP with a hidden layer and a linear output unit.The monotonicity of the error function is also guaranteed during the training iteration. 展开更多
关键词 多层感知器 bp算法 收敛性 单调性 神经网络
在线阅读 下载PDF
基于CS-BP-PID算法的烟叶密集烤房温度控制系统
12
作者 沈少君 闫九福 +4 位作者 卢雨 林晓路 杜超凡 朱荣光 孟令峰 《农机化研究》 北大核心 2026年第4期95-102,共8页
烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经... 烟叶烘烤作为决定烟叶品质的核心环节,其温湿度控制的精准性至关重要。针对当前密集烤房多阶段温度控制精度差、波动范围大、响应时间长等直接影响烟叶色泽、香气、化学成分、经济价值等问题,设计了一种基于布谷鸟算法(CS)优化的BP神经网络PID控制器。通过模拟布谷鸟的寄生行为和莱维飞行特性,对BP神经网络的初始权重进行优化,加快了BP神经网络的自学习速度,以实现密集烤房温度的快速精准调控,降低了超调量,提高了响应速度。同时,基于树莓派4B搭建了密集烤房温湿度控制试验平台,并对控制器性能进行了验证。结果表明:CS-BP-PID控制器上升时间为79.35 s,峰值时间为180.00 s,调节时间为249.38 s,最大超调量为3.25%,相比常规PID控制器缩短了38.18%,调节时间缩短了47.05%,峰值时间和最大超调量减少了50%以上,满足系统温度控制需求。通过多阶段烟叶烘烤试验,上等烟比例提高了14.45%,经济效益得到了显著提升。该控制器综合性能优良,达到了精准控温控湿的效果。 展开更多
关键词 烟叶密集烤房 温度控制系统 CS-bp-PID算法
在线阅读 下载PDF
基于GA-BP神经网络的碳纤维复合芯导线压接缺陷识别方法
13
作者 杜志叶 黄子韧 +2 位作者 俸波 岳国华 廖永力 《电工技术学报》 北大核心 2026年第1期315-328,共14页
碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出... 碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出一种碳纤维复合芯导线压接缺陷的漏磁检测信号缺陷特征提取方法。通过实验优化,以漏磁检测信号数据中7个峰值点的幅值、21个相对位置信息和7个波形类型信息作为缺陷判断特征值,有效地提高了缺陷种类和缺陷程度识别的准确度。对碳纤维芯导线进行磁性制备,并研制相对应的漏磁检测装置,生产106根不同类型、不同程度的碳纤维芯压接缺陷样品,得到613组漏磁检测信号数据并完成特征值提取,搭建基于遗传算法(GA)的反向传播(BP)神经网络。实测数据表明,该方法可以有效地完成对碳纤维复合芯导线压接缺陷类型的识别,同时对缺陷程度的识别准确率可达到94.31%。 展开更多
关键词 碳纤维复合芯导线 缺陷识别 磁性制备 漏磁检测 遗传算法 bp神经网络
在线阅读 下载PDF
基于随机森林算法的BP神经网络模型在坝基渗压水位预测中的应用
14
作者 王卓群 王建新 +2 位作者 王惠民 盛金昌 冯俊 《人民黄河》 北大核心 2026年第1期150-154,共5页
为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短... 为提高水电站坝基渗压水位预测精度,提出一种基于随机森林的BP神经网络模型(RF-BP模型)。以白鹤滩水电站为例,基于2021年8月1日至2023年2月23日坝基18个渗流测点数据进行分析。选取GA(遗传算法)-BP、PSO(粒子群算法)-BP、RF、LSTM(长短期记忆网络)-BP模型,与RF-BP模型的预测精度进行对比。考虑到渗压水位与库水位存在一定的相关性,对两者的皮尔逊相关系数进行计算。结果表明:在OH-WML1-1、OH-WML1-2和OH-WML5-3典型测点,RF-BP模型的MAE、RMSE、MAPE最小,预测精度最高,这突出了随机森林算法在优化因子选择方面的显著效果。测点渗压水位与库水位相关性越强,RF-BP模型的预测精度越高,说明了渗压水位与库水位之间的相关性对预测准确性有重要影响。 展开更多
关键词 渗压水位 随机森林算法 bp神经网络 精度 白鹤滩水电站
在线阅读 下载PDF
面向Ni-SiC纳米镀层耐磨性能预测的GA-BP神经网络模型
15
作者 覃树宏 梁锦 《电镀与精饰》 北大核心 2026年第1期116-122,130,共8页
Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genet... Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genetic Algorithm-Backpropagation,GA-BP)神经网络模型,对Ni-SiC纳米镀层的耐磨性能预测方法展开研究。选用50 mm×50 mm×5 mm 304不锈钢板材作为基体材料进行预处理,使用电镀液配方对镀液进行配置;采用恒电流脉冲电镀模式完成复合电镀,并利用多功能摩擦磨损试验机进行耐磨性能试验;构建基于BP神经网络的Ni-SiC纳米镀层耐磨性能预测模型,并引入遗传算法对BP神经网络模型的阈值和权值展开寻优,将磨损量作为模型输出,实现Ni-SiC纳米镀层的耐磨性能预测。试验表明,利用本文方法获取的磨损量预测值与磨损量真实值之间的误差最大仅为0.2 mg,预测后的R^(2)为0.988,预测结果的拟合优度较高,应用效果较好。 展开更多
关键词 Ni-SiC纳米镀层 耐磨性能预测 GA算法 bp神经网络 摩擦磨损
在线阅读 下载PDF
基于SSA-BP神经网络的库区边坡变形时序预测研究
16
作者 武益民 张成良 张焕雄 《水电能源科学》 北大核心 2026年第1期177-181,共5页
针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网... 针对库区边坡位移预测中存在的复杂非线性及不确定性难题,构建了一种基于智能优化算法的混合预测模型SSA-BP,旨在克服传统BP网络训练速度慢、易陷入局部最优的局限,从而提升边坡位移预测的精度和鲁棒性。通过麻雀搜索算法SSA对BP神经网络的初始权值和阈值进行全局优化,增强其收敛效率和适应性,并基于张家湾边坡历时5个月的真实位移监测数据进行训练。为验证模型优势,将SSA-BP模型与基于遗传算法(GA)和粒子群算法(PSO)优化的BP网络进行性能比对。研究表明,模型在24次迭代内快速收敛,显著优于对比模型,其均方根误差(RRMSE)、平均绝对百分比误差(M MAPE)、决定系数(R2)等评价指标均表现最佳。SSA-BP模型为库区边坡位移预测提供了一种可靠且高效的智能方法。 展开更多
关键词 库区边坡 位移变形预测 麻雀搜索算法(SSA) bp网络模型优化
原文传递
基于BP神经网络的煤矿高压供电系统电容电流预测研究
17
作者 栾斌 范秀伟 《陕西煤炭》 2026年第1期94-101,共8页
【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容... 【目的】在煤矿生产规模不断扩大和电网建设日趋智能化的背景下,针对煤矿高压供电系统电容电流预测精度低和计算误差大的问题,提出了一种煤矿高压供电系统电容电流智能预测方法。【方法】根据部分现有电缆参数,采用BP神经网络建立电容电流的预测模型,进而引入粒子群算法对预测模型进行优化,进行了特征参数选取、数据归一化处理并设计了采用文中方法的预测流程。通过平均相对误差等指标来分析误差大小并评价方法的精度,利用实测数据对电容电流预测方法进行对比分析。【结果】结果表明该方法的相对误差为2.52%。【结论】该方法实现了煤矿高压供电系统电容电流的准确预测,为其智能化预测提供了新思路。 展开更多
关键词 煤矿供电系统 电容电流 bp神经网络 PSO算法
在线阅读 下载PDF
基于ICOA-BP神经网络的装备制造企业制造费用预测研究
18
作者 赵紫卿 张承贺 孙家坤 《制造业自动化》 2026年第1期63-73,共11页
制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群... 制造费用是装备制造企业生产成本中的重要组成部分,制造费用的精准预测对提升企业的生产成本管理能力具有重要意义。为提高预测精度,提出一种改进小龙虾优化算法(ICOA)优化的BP神经网络预测模型。首先,采用优化拉丁超立方抽样初始化种群,提高初始种群分布均匀性;引入海洋捕食者算法第一阶段搜索策略和温度自适应因子改进避暑阶段,增强全局搜索能力;结合Lévy飞行策略优化觅食阶段,平衡全局探索与局部开发;利用t分布扰动更新最优个体,避免算法陷入局部最优。之后,利用改进后的小龙虾算法对BP神经网络的初始阈值、权值进行优化,以提升模型的预测精度。最后,通过山东某化工装备制造企业换热器管束制造费用及相关数据为样本进行验证。结果表明:ICOA-BP神经网络预测模型的平均绝对误差(MAE)、均方根误差(RMSE)分别降低了至少20.95%和20.45%,决定系数(R2)提升了至少14.01%,证明了构建模型在制造费用预测精度上的优势。 展开更多
关键词 装备制造企业 制造费用预测 bp神经网络 改进小龙虾优化算法 换热器管束
在线阅读 下载PDF
基于改进PSO-BO-BP的拖拉机双燃料发动机性能预测
19
作者 陈晖 王冰心 +1 位作者 黄镇财 计端 《农机化研究》 北大核心 2026年第1期268-276,共9页
为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机... 为提高拖拉机双燃料发动机性能与排放预测模型的性能,提出了一种融合改进粒子群优化算法(IMPSO)、贝叶斯优化(BO)和反向传播(BP)的协同预测模型(IMPSO-BO-BP)。基于发动机台架试验数据,通过整合IMPSO全局搜索、BO概率推理和BP梯度更新机制,构建多尺度优化模型。结果表明:BO解析了神经网络隐含层维度与学习率的非线性耦合效应,确定隐含层神经元数量24、学习率0.00215为最优参数组合,表明模型复杂度与学习率调控对泛化性能的协同约束作用;性能预测中,IMPSO-BO-BP对制动热效率(BTE)和制动燃料消耗率(BSFC)的预测平均绝对百分比误差(MAPE)与均方根误差(RMSE)较BO-BP模型降低25%~40%,R^(2)提升至0.995及以上,验证了其对物理主导型非线性关系的高精度建模能力;排放预测方面,模型对CO、NO_(x)和HC的MAPE为3.403%、5.223%、3.413%,R^(2)达0.9925、0.9942、0.9946,RMSE为56.429、45.709、335.322,虽精度略低于性能参数预测,但较BO-BP模型仍提升显著。研究证实多算法协同机制通过全局优化与局部收敛的互补效应,可显著提升模型精度和鲁棒性,为拖拉机双燃料发动机多目标优化控制和低排放设计提供了可靠的建模工具。 展开更多
关键词 双燃料发动机 性能预测 bp神经网络 改进粒子群优化算法
在线阅读 下载PDF
Circle BP Algorithm for MLP Neural Network 被引量:1
20
作者 CHEN Jianyong,CHEN Zhenxiang,LU Yingyang,XU Shenchu (Dept.of Physics,Xiamen University,Xiamen 361005,CHN) 《Semiconductor Photonics and Technology》 CAS 1998年第3期179-182,192,共5页
A simple new BP algorithm named circle BP algorithm is introduced.With this algorithm,local minimums can be completely got rid of and learning speed can improve dramatically.It can be easily designed into the circuitr... A simple new BP algorithm named circle BP algorithm is introduced.With this algorithm,local minimums can be completely got rid of and learning speed can improve dramatically.It can be easily designed into the circuitry and advance further the application of MLP neural network . 展开更多
关键词 Circle bp algorithm Neural Network XOR Network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部