针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization ...针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。展开更多
文摘针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。
文摘针对非物质文化遗产蓝印花布数字化生成技术发展较慢的问题,提出了一种基于图像拼接技术的蓝印花布边缘纹样快速生成算法,实现了对边缘纹样的拼接延展.对于蓝印花布样本存在颜色和噪点问题,提出了一种预处理算法,可统一待拼接图像样本的颜色并消除噪点.在拼接算法设计中,通过对特征提取、匹配、提纯及融合等关键环节的算法进行对比实验,系统性优化各环节的算法组合,形成高效的拼接算法架构.实验结果表明,该算法可以实现蓝印花布边缘纹样的快速拼接;采用基于FAST算法的纹样特征点的检测时间比SIFT(Scale-Invariant Feature Transform)和SURF(Speeded Up Robust Features)算法时间分别减少了74.6%和89.8%;采用基于BF算法的纹样特征点的平均匹配时间比FLANN(Fast Library for Approximate Nearest Neighbors)算法时间减少了88.6%;采用基于PROSAC算法的纹样匹配特征点的提纯时间平均比RANSAC(Random Sample Consensus)算法时间减少了20%;总体拼接时间平均比传统算法时间减少了1.0718 s.