How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation re...How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.展开更多
Can current robotic technologies truly replicate the full scope and intricacies of human labour?In practice,the adoption of robots remains limited,especially in open,unstructured environments commonly encountered in e...Can current robotic technologies truly replicate the full scope and intricacies of human labour?In practice,the adoption of robots remains limited,especially in open,unstructured environments commonly encountered in everyday scenarios such as services,healthcare,agriculture,construction,and numerous other fields.From the perspective of general robotic manipulation,the challenges arise from three factors.(1)High operational barriers:human operators are obliged to master specialized robotic programming languages and gain a deep understanding of the tasks at hand.These tasks need to be broken down into action-level robotic programs,which results in high labour costs.(2)Limited autonomous task execution:robots lack the capability to independently plan and execute actions required to achieve the target tasks.This limitation renders them unsuitable for deployment in open,unstructured environments that demand sophisticated interaction and seamless collaboration with humans.展开更多
基金supported by the National Natural Science Foundation of China(72001212,61773120)Hunan Postgraduate Research Innovation Project(CX20210031)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Innovation Team of Guangdong Provincial Department of Education(2018KCXTD031)。
文摘How to make use of limited onboard resources for complex and heavy space tasks has attracted much attention.With the continuous improvement on satellite payload capacity and the increasing complexity of observation requirements,the importance of satellite autonomous task scheduling research has gradually increased.This article first gives the problem description and mathematical model for the satellite autonomous task scheduling and then follows the steps of"satellite autonomous task scheduling,centralized autonomous collaborative task scheduling architecture,distributed autonomous collaborative task scheduling architecture,solution algorithm".Finally,facing the complex and changeable environment situation,this article proposes the future direction of satellite autonomous task scheduling.
基金supported by the Guangdong Provincial Science and Technology Program(Grant No.2023A0505030003).
文摘Can current robotic technologies truly replicate the full scope and intricacies of human labour?In practice,the adoption of robots remains limited,especially in open,unstructured environments commonly encountered in everyday scenarios such as services,healthcare,agriculture,construction,and numerous other fields.From the perspective of general robotic manipulation,the challenges arise from three factors.(1)High operational barriers:human operators are obliged to master specialized robotic programming languages and gain a deep understanding of the tasks at hand.These tasks need to be broken down into action-level robotic programs,which results in high labour costs.(2)Limited autonomous task execution:robots lack the capability to independently plan and execute actions required to achieve the target tasks.This limitation renders them unsuitable for deployment in open,unstructured environments that demand sophisticated interaction and seamless collaboration with humans.