期刊文献+
共找到916,749篇文章
< 1 2 250 >
每页显示 20 50 100
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
1
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
在线阅读 下载PDF
Auto-Regressive Models of Non-Stationary Time Series with Finite Length 被引量:7
2
作者 费万春 白伦 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第2期162-168,共7页
To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. ... To analyze and simulate non-stationary time series with finite length, the statistical characteris- tics and auto-regressive (AR) models of non-stationary time series with finite length are discussed and stud- ied. A new AR model called the time varying parameter AR model is proposed for solution of non-stationary time series with finite length. The auto-covariances of time series simulated by means of several AR models are analyzed. The result shows that the new AR model can be used to simulate and generate a new time series with the auto-covariance same as the original time series. The size curves of cocoon filaments re- garded as non-stationary time series with finite length are experimentally simulated. The simulation results are significantly better than those obtained so far, and illustrate the availability of the time varying parameter AR model. The results are useful for analyzing and simulating non-stationary time series with finite length. 展开更多
关键词 time series analysis auto-covariance NON-STATIONARY auto-regressive model size curve of cocoon filament
原文传递
China's Energy Consumption Forecasting by GMDH Based Auto-Regressive Model 被引量:3
3
作者 XIE Ling XIAO Jin +2 位作者 HU Yi ZHAO Hengjun XIAO Yi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第6期1332-1349,共18页
It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-re... It is very significant for us to predict future energy consumption accurately. As for China's energy consumption annual time series, the sample size is relatively small. This paper combines the traditional auto-regressive model with group method of data handling(GMDH) suitable for small sample prediction, and proposes a novel GMDH based auto-regressive(GAR) model. This model can finish the modeling process in self-organized manner, including finding the optimal complexity model, determining the optimal auto-regressive order and estimating model parameters. Further, four different external criteria are proposed and the corresponding four GAR models are constructed. The authors conduct empirical analysis on three energy consumption time series, including the total energy consumption, the total petroleum consumption and the total gas consumption. The results show that AS-GAR model has the best forecasting performance among the four GAR models, and it outperforms ARIMA model, BP neural network model, support vector regression model and GM(1, 1) model.Finally, the authors give the out of sample prediction of China's energy consumption from 2014 to 2020 by AS-GAR model. 展开更多
关键词 auto-regressive model energy demand prediction GMDH small sample forecasting
原文传递
Time-varying parameter auto-regressive models for autocovariance nonstationary time series 被引量:2
4
作者 FEI WanChun BAI Lun 《Science China Mathematics》 SCIE 2009年第3期577-584,共8页
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t... In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out. 展开更多
关键词 autocovariance nonstationary time series time-varying parameter time-varying order auto-regressive model minimum AIC estimation 37M10 68Q10
原文传递
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:17
5
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
暂未订购
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
6
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and Moving-Average (ARMA) modeling probability distributions extreme wind speeds
在线阅读 下载PDF
Parametric modeling of hypersonic ballistic data based on time varying auto-regressive model 被引量:3
7
作者 HU YuDong LI JunLong +2 位作者 ZHANG Zhao JING WuXing GAO ChangSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1396-1405,共10页
For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stati... For describing target motion in hypersonic vehicle defense,a parametric analyzing and modeling method on ballistic data is proposed based on time varying auto-regressive method.Ballistic data are regarded as non-stationary random signal,where the hidden internal law is studied.Firstly,ballistic data are decomposed into smooth linear trend signal and non-stationary periodic skip signal with ensemble empirical mode decomposition method to avoid mutual interference between different modal data.Secondly,the linear trend signal and the periodic skip signal are modeled separately.The linear trend signal is approximated by power function regressive estimator and the periodic skip signal is modeled based on time varying auto-regressive method.In order to determine optimal model orders,a novel method is presented based on information theoretic criteria and the criteria of minimizing the mean absolute error.Finally,the consistency test is conducted by investigating the time-frequency spectrum characteristics and statistical properties of outputs of the parametric model established above and dynamics model under the same initial condition.Simulation results demonstrate that the parametric model established by the proposed method shares a high consistency with the original dynamics model. 展开更多
关键词 hypersonic vehicle parametric modeling ballistic data decomposition time varying auto-regressive periods drift
原文传递
CONSTRUCTION OF POLYNOMIAL MATRIX USING BLOCK COEFFICIENT MATRIX REPRESENTATION AUTO-REGRESSIVE MOVING AVERAGE MODEL FOR ACTIVELY CONTROLLED STRUCTURES 被引量:1
8
作者 李春祥 周岱 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第6期661-667,共7页
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF... The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation. 展开更多
关键词 actively controlled MDOF structures stationary stochastic processes polynomial matrix auto-regressive moving average
在线阅读 下载PDF
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
9
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
原文传递
A PREDICTION OF UT SERIES WITH AUTOADAPTIVE AUTO-REGRESSIVE MODEL
10
作者 丁月蓉 肖耐园 夏一飞 《Science China Mathematics》 SCIE 1991年第12期1484-1491,共8页
The prediction of UT can be separated into two parts, i.e. the prediction of a definitivecomponent and that of a random component. In this paper, the first part is carried out withlinear fitting extrapolation and peri... The prediction of UT can be separated into two parts, i.e. the prediction of a definitivecomponent and that of a random component. In this paper, the first part is carried out withlinear fitting extrapolation and periodic fitting extrapolation of NEOS UT1-UTC series ofone-day interval with a span of two years, and the second part with an RLS recursive proce-dure of auto-adaptive AR modeling. The combination of the two predicted values gives asatisfying result that the prediction precision reaches 0″.0038 with a lead time of 60 days. 展开更多
关键词 auto-adaptive AR modeling preeision of UNIVERSAL time RANDOM COMPONENT PREDICTION precision.
原文传递
Agri-Eval:Multi-level Large Language Model Valuation Benchmark for Agriculture
11
作者 WANG Yaojun GE Mingliang +2 位作者 XU Guowei ZHANG Qiyu BIE Yuhui 《农业机械学报》 北大核心 2026年第1期290-299,共10页
Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLM... Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLMs.Therefore,in order to better assess the capability of LLMs in the agricultural domain,Agri-Eval was proposed as a benchmark for assessing the knowledge and reasoning ability of LLMs in agriculture.The assessment dataset used in Agri-Eval covered seven major disciplines in the agricultural domain:crop science,horticulture,plant protection,animal husbandry,forest science,aquaculture science,and grass science,and contained a total of 2283 questions.Among domestic general-purpose LLMs,DeepSeek R1 performed best with an accuracy rate of 75.49%.In the realm of international general-purpose LLMs,Gemini 2.0 pro exp 0205 standed out as the top performer,achieving an accuracy rate of 74.28%.As an LLMs in agriculture vertical,Shennong V2.0 outperformed all the LLMs in China,and the answer accuracy rate of agricultural knowledge exceeded that of all the existing general-purpose LLMs.The launch of Agri-Eval helped the LLM developers to comprehensively evaluate the model's capability in the field of agriculture through a variety of tasks and tests to promote the development of the LLMs in the field of agriculture. 展开更多
关键词 large language models assessment systems agricultural knowledge agricultural datasets
在线阅读 下载PDF
Ecological Dynamics of a Logistic Population Model with Impulsive Age-selective Harvesting
12
作者 DAI Xiangjun JIAO Jianjun 《应用数学》 北大核心 2026年第1期72-79,共8页
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy... In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting. 展开更多
关键词 The logistic population model Selective harvesting Asymptotic stability EXTINCTION
在线阅读 下载PDF
Modeling of Precipitation over Africa:Progress,Challenges,and Prospects
13
作者 A.A.AKINSANOLA C.N.WENHAJI +21 位作者 R.BARIMALALA P.-A.MONERIE R.D.DIXON A.T.TAMOFFO M.O.ADENIYI V.ONGOMA I.DIALLO M.GUDOSHAVA C.M.WAINWRIGHT R.JAMES K.C.SILVERIO A.FAYE S.S.NANGOMBE M.W.POKAM D.A.VONDOU N.C.G.HART I.PINTO M.KILAVI S.HAGOS E.N.RAJAGOPAL R.K.KOLLI S.JOSEPH 《Advances in Atmospheric Sciences》 2026年第1期59-86,共28页
In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and cha... In recent years,there has been an increasing need for climate information across diverse sectors of society.This demand has arisen from the necessity to adapt to and mitigate the impacts of climate variability and change.Likewise,this period has seen a significant increase in our understanding of the physical processes and mechanisms that drive precipitation and its variability across different regions of Africa.By leveraging a large volume of climate model outputs,numerous studies have investigated the model representation of African precipitation as well as underlying physical processes.These studies have assessed whether the physical processes are well depicted and whether the models are fit for informing mitigation and adaptation strategies.This paper provides a review of the progress in precipitation simulation overAfrica in state-of-the-science climate models and discusses the major issues and challenges that remain. 展开更多
关键词 RAINFALL MONSOON climate modeling CORDEX CMIP6 convection-permitting models
在线阅读 下载PDF
Design optimization and FEA of B-6 and B-7 levels ballistics armor:A modelling approach
14
作者 Muhammad Naveed CHU Jinkui +1 位作者 Atif Ur Rehman Arsalan Hyder 《大连理工大学学报》 北大核心 2026年第1期66-77,共12页
Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is empl... Utilizing finite element analysis,the ballistic protection provided by a combination of perforated D-shaped and base armor plates,collectively referred to as radiator armor,is evaluated.ANSYS Explicit Dynamics is employed to simulate the ballistic impact of 7.62 mm armor-piercing projectiles on Aluminum AA5083-H116 and Steel Secure 500 armors,focusing on the evaluation of material deformation and penetration resistance at varying impact points.While the D-shaped armor plate is penetrated by the armor-piercing projectiles,the combination of the perforated D-shaped and base armor plates successfully halts penetration.A numerical model based on the finite element method is developed using software such as SolidWorks and ANSYS to analyze the interaction between radiator armor and bullet.The perforated design of radiator armor is to maintain airflow for radiator function,with hole sizes smaller than the bullet core diameter to protect radiator assemblies.Predictions are made regarding the brittle fracture resulting from the projectile core′s bending due to asymmetric impact,and the resulting fragments failed to penetrate the perforated base armor plate.Craters are formed on the surface of the perforated D-shaped armor plate due to the impact of projectile fragments.The numerical model accurately predicts hole growth and projectile penetration upon impact with the armor,demonstrating effective protection of the radiator assemblies by the radiator armor. 展开更多
关键词 radiator armor ballistics simulation Johnson-Cook model armor-piercing projectile perforated D-shaped armor plate
在线阅读 下载PDF
Lithospheric magnetic variations on the Tibetan Plateau based on a 3D surface spline model,compared with strong earthquake occurrences
15
作者 PengTao Zhang Jun Yang +3 位作者 LiLi Feng Xia Li YuHong Zhao YingFeng Ji 《Earth and Planetary Physics》 2026年第1期30-43,共14页
The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-bas... The National Geophysical Data Center(NGDC)of the United States has collected aeromagnetic data for input into a series of geomagnetic models to improve model resolution;however,in the Tibetan Plateau region,ground-based observations remain insufficient to clearly reflect the characteristics of the region’s lithospheric magnetism.In this study,we evaluate the lithospheric magnetism of the Tibetan Plateau by using a 3D surface spline model based on observations from>200 newly constructed repeat stations(portable stations)to determine the spatial distribution of plateau geomagnetism,as well as its correlation with the tectonic features of the region.We analyze the relationships between M≥5 earthquakes and lithospheric magnetic field variations on the Tibetan Plateau and identify regions susceptible to strong earthquakes.We compare the geomagnetic results with those from an enhanced magnetic model(EMM2015)developed by the NGDC and provide insights into improving lithospheric magnetic field calculations in the Tibetan Plateau region.Further research reveals that these magnetic anomalies exhibit distinct differences from the magnetic-seismic correlation mechanisms observed in other tectonic settings;here,they are governed primarily by the combined effects of compressional magnetism,thermal magnetism,and deep thermal stress.This study provides new evidence of geomagnetic anomalies on the Tibetan Plateau,interprets them physically,and demonstrates their potential for identifying seismic hazard zones on the Plateau. 展开更多
关键词 Tibetan Plateau magnetic variation SEISMICITY surface spline model enhanced magnetic model
在线阅读 下载PDF
Do Higher Horizontal Resolution Models Perform Better?
16
作者 Shoji KUSUNOKI 《Advances in Atmospheric Sciences》 2026年第1期259-262,共4页
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(... Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)]. 展开更多
关键词 enhancing model resolution refinement data assimilation systems section climate model climate projection higher horizontal resolution seasonal forecasting simulation seasonal migration rain bands model resolution
在线阅读 下载PDF
A Predictive Model for the Elastic Modulus of High-Strength Concrete Based on Coarse Aggregate Characteristics
17
作者 LI Liangshun LI Huajian +2 位作者 HUANG Fali YANG Zhiqiang DONG Haoliang 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期121-137,共17页
To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the stre... To investigate the influence of coarse aggregate parent rock properties on the elastic modulus of concrete,the mineralogical properties and stress-strain curves of granite and dolomite parent rocks,as well as the strength and elastic modulus of mortar and concrete prepared with mechanism aggregates of the corresponding lithology,and the stress-strain curves of concrete were investigated.In this paper,a coarse aggregate and mortar matrix bonding assumption is proposed,and a prediction model for the elastic modulus of mortar is established by considering the lithology of the mechanism sand and the slurry components.An equivalent coarse aggregate elastic modulus model was established by considering factors such as coarse aggregate particle size,volume fraction,and mortar thickness between coarse aggregates.Based on the elastic modulus of the equivalent coarse aggregate and the remaining mortar,a prediction model for the elastic modulus of the two and three components of concrete in series and then in parallel was established,and the predicted values differed from the measured values within 10%.It is proposed that the coarse aggregate elastic modulus in highstrength concrete is the most critical factor affecting the elastic modulus of concrete,and as the coarse aggregate elastic modulus increases by 27.7%,the concrete elastic modulus increases by 19.5%. 展开更多
关键词 elastic modulus prediction model MINERALOGICAL influence mechanism
原文传递
Photometric modeling of ejecta for evaluating defensive Kinetic impacts on asteroids
18
作者 XiaoYu Sun ZhiJun Song +4 位作者 XiaoTao Guo XiaoJing Zhang Yuri Skorov Yang Yu He Zhang 《Earth and Planetary Physics》 2026年第1期205-221,共17页
Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evo... Kinetic impact is the most practical planetary-defense technique,with momentum-transfer efficiency central to deflection design.We present a Monte Carlo photometric framework that couples ejecta sampling,dynamical evolution,and image synthesis to compare directly with HST,LICIACube,ground-based and Lucy observations of the DART impact.Decomposing ejecta into(1)a highvelocity(~1600 m/s)plume exhibiting Na/K resonance,(2)a low-velocity(~1 m/s)conical component shaped by binary gravity and solar radiation pressure,and(3)meter-scale boulders,we quantify each component’s mass and momentum.Fitting photometric decay curves and morphological evolution yields size-velocity distributions and,via scaling laws,estimates of Dimorphos’bulk density,cratering parameters,and cohesive strength that agree with dynamical constraints.Photometric ejecta modeling therefore provides a robust route to constrain momentum enhancement and target properties,improving predictive capability for kinetic-deflection missions. 展开更多
关键词 Kinetic impact DART mission ejecta dynamics photometric modeling
在线阅读 下载PDF
An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model
19
作者 Adel Saad Assiri 《Computers, Materials & Continua》 2026年第1期1783-1803,共21页
Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying ... Customer churn is the rate at which customers discontinue doing business with a company over a given time period.It is an essential measure for businesses to monitor high churn rates,as they often indicate underlying issues with services,products,or customer experience,resulting in considerable income loss.Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth.Traditional machine learning(ML)models often struggle to capture complex temporal dependencies in client behavior data.To address this,an optimized deep learning(DL)approach using a Regularized Bidirectional Long Short-Term Memory(RBiLSTM)model is proposed to mitigate overfitting and improve generalization error.The model integrates dropout,L2-regularization,and early stopping to enhance predictive accuracy while preventing over-reliance on specific patterns.Moreover,this study investigates the effect of optimization techniques on boosting the training efficiency of the developed model.Experimental results on a recent public customer churn dataset demonstrate that the trained model outperforms the traditional ML models and some other DL models,such as Long Short-Term Memory(LSTM)and Deep Neural Network(DNN),in churn prediction performance and stability.The proposed approach achieves 96.1%accuracy,compared with LSTM and DNN,which attain 94.5%and 94.1%accuracy,respectively.These results confirm that the proposed approach can be used as a valuable tool for businesses to identify at-risk consumers proactively and implement targeted retention strategies. 展开更多
关键词 Customer churn prediction deep learning RBiLSTM DROPOUT baseline models
在线阅读 下载PDF
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
20
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部