At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line...At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.展开更多
Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works w...Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works which looks similar to painting works created by famous artists.This paper presents a painting image browser which assists the explorative discovery of user-interested painting works.The presented browser applies a new multidimensional data visualization technique that highlights particular ranges of particular numeric values based on association rules to suggest cues to find favorite painting images.This study assumes a large number of painting images are provided where categorical information(e.g.,names of artists,created year)is assigned to the images.The presented system firstly calculates the feature values of the images as a preprocessing step.Then the browser visualizes the multidimensional feature values as a heatmap and highlights association rules discovered from the relationships between the feature values and categorical information.This mechanism enables users to explore favorite painting images or painting images that look similar to famous painting works.Our case study and user evaluation demonstrates the effectiveness of the presented image browser.展开更多
BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations on...BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations one statistical method for finding correlations between variables in big datasets is called association rule mining(ARM).This technique finds patterns of common items or events in the data set,including associations.Through the analysis of patient data,including demographics,genetic information,and reactions with previous treatments,ARM can identify harmful drug reactions,possible novel combinations of medicines,and trends which connect particular individual features to treatment outcomes.AIM To investigate the evidence on the effects of anti-epileptic drugs(AEDs)on calcium metabolism and supplementing with vitamin D to help lower the likelihood of bone-related issues using ARM technique.METHODS ARM technique was used to analyze patients’behavior on calcium metabolism,vitamin D and anti-epileptic medicines.Epileptic sufferers of both sexes who attended neurological outpatient and in patient department clinics were recruited for the study.There were three patient groups:Group 1 received one AED,group 2 received two AEDs,and group 3 received more than two AEDs.The researchers analyzed the alkaline phosphatase,ionized calcium,total calcium,phosphorus,vitamin D levels,or parathyroid hormone values.RESULTS A total of 150 patients,aged 12 years to 60 years,were studied,with 50 in each group(1,2,and 3).60%were men,this gender imbalance may affect the study’s findings,as women have different bone metabolism dynamics influenced by hormonal variations,including menopause.The results may not fully capture the distinct effects of AEDs on female patients.A greater equal distribution of women should be the goal of future studies in order to offer a complete comprehension of the metabolic alterations brought on by AEDs.86 patients had generalized epilepsy,64 partial.42%of patients had AEDs for>5 years.Polytherapy reduced calcium and vitamin D levels compared to mono and dual therapy.Polytherapy elevated alkaline phosphatase and phosphorus levels.CONCLUSION ARM revealed the possible effects of variables like age,gender,and polytherapy on parathyroid hormone levels in individuals taking antiepileptic medication.展开更多
Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF...Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.展开更多
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela...An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.展开更多
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree...To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.展开更多
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons...In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.展开更多
Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds...Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.展开更多
Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weight...Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.展开更多
Objective To summarize the acupoint selection rule for chronic gastritis treated with acupuncture and moxibustion so as to provide a certain evidence for clinical practice and scientific research.Methods By searching ...Objective To summarize the acupoint selection rule for chronic gastritis treated with acupuncture and moxibustion so as to provide a certain evidence for clinical practice and scientific research.Methods By searching journal literature on chronic gastritis treated with acupuncture and moxibustion in recent 10 years,with data mining,the acupoints screened from literature were analyzed.Results A total of 803 articles were included finally.Conception vessel,stomach meridian and bladder meridian were mostly selected,the acupoints were selected from the abdomen,the thigh/crus,the back and the arms.The top 5 aucpoints with high frequency were Zúsānǐ(足三里ST36),Zhōngwǎn(中脘CV12),Wèishū(胃俞BL21)(332),Píshū(脾俞BL20)and Nèiguān(内关PC6).The top 5 acupoint combinations with high frequency included CV12 combined with ST36,BL21 with CV12,BL21 with ST35 and BL20 with CV12.The mostly used specific points were front-mu point,he-sea point,crossing point and back-shu point.Conclusion In treatment of chronic gastritis with acupuncture and moxibustion,conception vessel,stomach meridian and bladder meridian are particularly selected in combination and the specific points with duplicate effect are mostly selected,especially focusing on the application of front-mu point.展开更多
Customer requirements analysis is the key step for product variety design of mass customiza-tion(MC). Quality function deployment (QFD) is a widely used management technique for understanding the voice of the customer...Customer requirements analysis is the key step for product variety design of mass customiza-tion(MC). Quality function deployment (QFD) is a widely used management technique for understanding the voice of the customer (VOC), however, QFD depends heavily on human subject judgment during extracting customer requirements and determination of the importance weights of customer requirements. QFD pro-cess and related problems are so complicated that it is not easily used. In this paper, based on a general data structure of product family, generic bill of material (GBOM), association rules analysis was introduced to construct the classification mechanism between customer requirements and product architecture. The new method can map customer requirements to the items of product family architecture respectively, accomplish the mapping process from customer domain to physical domain directly, and decrease mutual process between customer and designer, improve the product design quality, and thus furthest satisfy customer needs. Finally, an example of customer requirements mapping of the elevator cabin was used to illustrate the proposed method.展开更多
Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence w...Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.展开更多
The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates ...The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.展开更多
In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and impl...In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.展开更多
Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results conta...Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.展开更多
Objective:Based on data mining software,applying frequent itemsets,association rules,hierarchical clustering,complex networks and other data mining methods to analyze the usage and compatibility of traditional Chinese...Objective:Based on data mining software,applying frequent itemsets,association rules,hierarchical clustering,complex networks and other data mining methods to analyze the usage and compatibility of traditional Chinese medicine(TCM)patent compound for functional dyspepsia.Method:Use the Chinese patent database to search the compound for the treatment of functional dyspepsia,exclude traditional Chinese medicine extracts,single drugs,combined use of Chinese and Western medicines,etc.,screen the patented compound of TCM,establish an Excel data table,and apply data mining software to The data is subjected to frequency statistics,association rules,cluster analysis and complex network analysis.Result:A total of 238 prescriptions for functional dyspepsia were screened.The four qi of the drugs were mainly warm and calm,the five flavors were mainly sweet and spicy,and the spleen and stomach were the main meridians.The top 10 Chinese medicines with higher frequency are Shanzha、Chenpi、Gancao、Maiya、Jineijin、Fuling、Baizhu、Shenqu、Houpo、Banxia;frequent itemsets show that the drugs are mainly compatible with qi and spleen,qi and digestion;association rules The analysis shows that the common drug pairs used in the treatment of functional dyspepsia include Chenpi-Shanzha、Maiya-Shanzha、Jineijin-Shanzha,etc.;cluster analysis found that there are 4 types of drugs for functional dyspepsia,mainly including drugs for regulating qi-flowing for harmonizing stomach,drugs for soothing liver and promoting Qi,drugs for eliminating food and resolving accumulation,drugs for benefiting qi and strengthening spleen;the 22-flavor Chinese medicine in the core drug network,the core compatibility is mainly to eliminate stagnation and spleen.Conclusion:Data mining research provides a reference for the clinical treatment of functional dyspepsia and the development of TCM formulas;Clinical treatment of functional dyspepsia should grasp the basic principles of strengthening vital energy and eliminating pathogenic factors to benefit qi,strengthen the spleen,and eliminate food.It is a basic treatment method,taking into account the methods of regulating qi-flowing for harmonizing stomach,soothing the liver and relieving depression,relieving dampness and dampness,and combining the specific conditions of patients with syndrome differentiation and treatment.展开更多
This paper is aimed to develop an algorithm for extracting association rules,called Context-Based Association Rule Mining algorithm(CARM),which can be regarded as an extension of the Context-Based Positive and Negativ...This paper is aimed to develop an algorithm for extracting association rules,called Context-Based Association Rule Mining algorithm(CARM),which can be regarded as an extension of the Context-Based Positive and Negative Association Rule Mining algorithm(CBPNARM).CBPNARM was developed to extract positive and negative association rules from Spatiotemporal(space-time)data only,while the proposed algorithm can be applied to both spatial and non-spatial data.The proposed algorithm is applied to the energy dataset to classify a country’s energy development by uncovering the enthralling interdependencies between the set of variables to get positive and negative associations.Many association rules related to sustainable energy development are extracted by the proposed algorithm that needs to be pruned by some pruning technique.The context,in this paper serves as a pruning measure to extract pertinent association rules from non-spatial data.Conditional Probability Increment Ratio(CPIR)is also added in the proposed algorithm that was not used in CBPNARM.The inclusion of the context variable and CPIR resulted in fewer rules and improved robustness and ease of use.Also,the extraction of a common negative frequent itemset in CARM is different from that of CBPNARM.The rules created by the proposed algorithm are more meaningful,significant,relevant and insightful.The accuracy of the proposed algorithm is compared with the Apriori,PNARM and CBPNARM algorithms.The results demonstrated enhanced accuracy,relevance and timeliness.展开更多
The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, th...The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, the number of useful rules is hard to estimate. If the number is too large, we cannot effectively extract the meaningful rules. This paper analyzes the meanings of the parameters and designs a variety of equations between the number of rules and the parameters by using regression method. Finally, we experimentally obtain a preferable regression equation. This paper uses multiple correlation coeficients to test the fitting efiects of the equations and uses significance test to verify whether the coeficients of parameters are significantly zero or not. The regression equation that has a larger multiple correlation coeficient will be chosen as the optimally fitted equation. With the selected optimal equation, we can predict the number of rules under the given parameters and further optimize the choice of the three parameters and determine their ranges of values.展开更多
Aiming at the research that using more new knowledge to develope knowledge system with dynamic accordance, and under the background of using Fuzzy language field and Fuzzy language values structure as description fram...Aiming at the research that using more new knowledge to develope knowledge system with dynamic accordance, and under the background of using Fuzzy language field and Fuzzy language values structure as description framework, the generalized cell Automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model is brought forward. On this basis, a kind of the new method that can discover causal association rules is provded. According to the causal information of standard sample space and commonly sample space, through constructing its state (abnormality) relation matrix, causal association rules can be gained by using inductive reasoning mechanism. The estimate of this algorithm complexity is given,and its validiw is proved through case.展开更多
As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the tr...As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the traditional test method is not ease fit for the application program in the field of the data mining.In this paper,based on metamorphic testing,a software testing method is proposed in the field of the data mining,makes an association rules algorithm as the specific case,and constructs the metamorphic relation on the algorithm.Experiences show that the method can achieve the testing target and is feasible to apply to other domain.展开更多
文摘At present, associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials. So the stress characteristic line conforms to the velocity line. It is proved that geotechnical materials do not abide by the associated flow rule. It is impossible for the stress characteristic line to conform to the velocity line. Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle, so that the velocity line must be studied by non-associated flow rule. According to limit analysis theory, the theory of slip line field is put forward in this paper, and then the ultimate beating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow nile individually. These two results are identical since the ultimate bearing capacity is independent of flow role. On the contrary, the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associat- ed flow rule is incorrect.
文摘Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works which looks similar to painting works created by famous artists.This paper presents a painting image browser which assists the explorative discovery of user-interested painting works.The presented browser applies a new multidimensional data visualization technique that highlights particular ranges of particular numeric values based on association rules to suggest cues to find favorite painting images.This study assumes a large number of painting images are provided where categorical information(e.g.,names of artists,created year)is assigned to the images.The presented system firstly calculates the feature values of the images as a preprocessing step.Then the browser visualizes the multidimensional feature values as a heatmap and highlights association rules discovered from the relationships between the feature values and categorical information.This mechanism enables users to explore favorite painting images or painting images that look similar to famous painting works.Our case study and user evaluation demonstrates the effectiveness of the presented image browser.
文摘BACKGROUND There is a lack of study on vitamin D and calcium levels in epileptic patients receiving therapy,despite the growing recognition of the importance of bone health in individuals with epilepsy.Associations one statistical method for finding correlations between variables in big datasets is called association rule mining(ARM).This technique finds patterns of common items or events in the data set,including associations.Through the analysis of patient data,including demographics,genetic information,and reactions with previous treatments,ARM can identify harmful drug reactions,possible novel combinations of medicines,and trends which connect particular individual features to treatment outcomes.AIM To investigate the evidence on the effects of anti-epileptic drugs(AEDs)on calcium metabolism and supplementing with vitamin D to help lower the likelihood of bone-related issues using ARM technique.METHODS ARM technique was used to analyze patients’behavior on calcium metabolism,vitamin D and anti-epileptic medicines.Epileptic sufferers of both sexes who attended neurological outpatient and in patient department clinics were recruited for the study.There were three patient groups:Group 1 received one AED,group 2 received two AEDs,and group 3 received more than two AEDs.The researchers analyzed the alkaline phosphatase,ionized calcium,total calcium,phosphorus,vitamin D levels,or parathyroid hormone values.RESULTS A total of 150 patients,aged 12 years to 60 years,were studied,with 50 in each group(1,2,and 3).60%were men,this gender imbalance may affect the study’s findings,as women have different bone metabolism dynamics influenced by hormonal variations,including menopause.The results may not fully capture the distinct effects of AEDs on female patients.A greater equal distribution of women should be the goal of future studies in order to offer a complete comprehension of the metabolic alterations brought on by AEDs.86 patients had generalized epilepsy,64 partial.42%of patients had AEDs for>5 years.Polytherapy reduced calcium and vitamin D levels compared to mono and dual therapy.Polytherapy elevated alkaline phosphatase and phosphorus levels.CONCLUSION ARM revealed the possible effects of variables like age,gender,and polytherapy on parathyroid hormone levels in individuals taking antiepileptic medication.
基金supported by National Natural Science Foundation of China(Nos.52174328 and 52474368)Fundamental Research Funds for Central Universities of Central South University(Nos.2022ZZTS0084 and 2024ZZTS0062).
文摘Reducing raw materials consumption(RMC)in electric arc furnace(EAF)steelmaking process is beneficial to the reduction in resource and energy consumption.The conventional indicator of evaluating RMC only focuses on EAF inputs and outputs,neglecting the associations between smelting operations and RMC.Traditional methods of reducing RMC rely on manual experience and lack a standard operation guidance.A method based on association rules mining and metallurgical mechanism(ARM-MM)was proposed.ARM-MM proposed an improved evaluation indicator of RMC and the indicator independently showed the associations between smelting operations and RMC.On the basis,1265 heats of real EAF data were used to obtain the operation guidance for RMC reduction.According to the ratio of hot metal(HM)in charge metals,data were divided into all dataset,low HM ratio dataset,medium HM ratio dataset,and high HM ratio dataset.ARM algorithm was used in each dataset to obtain specific operation guidance.The real average RMC under all dataset,medium HM ratio dataset,and high HM ratio dataset was reduced by 279,486,and 252 kg/heat,respectively,when obtained operation guidance was applied.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Science and Technology Fund of China University of Mining and Technology(No.2007B016)
文摘An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.
基金The National Natural Science Foundation of China(No.60473045)the Technology Research Project of Hebei Province(No.05213573)the Research Plan of Education Office of Hebei Province(No.2004406)
文摘To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency.
文摘In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.
基金Supported by Science and Technology Plan Project of Guangdong Province (2009B010900026,2009CD058,2009CD078,2009CD079,2009CD080)Special Funds for Support Program of Development of Modern Information Service Industry of Guangdong Province(06120840B0370124)Funded Fund Project of South China Agricultural University (2007K017)~~
文摘Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.
文摘Association rules are useful for determining correlations between items. Applying association rules to intrusion detection system (IDS) can improve the detection rate, but false positive rate is also increased. Weighted association rules are used in this paper to mine intrustion models, which can increase the detection rate and decrease the false positive rate by some extent. Based on this, the structure of host-based IDS using weighted association rules is proposed.
基金Supported by National Basic Research Program of China(973):2015CB554502Graduate Candidate Innovation Project of Hunan University of Chinese Medicine:2020CX67。
文摘Objective To summarize the acupoint selection rule for chronic gastritis treated with acupuncture and moxibustion so as to provide a certain evidence for clinical practice and scientific research.Methods By searching journal literature on chronic gastritis treated with acupuncture and moxibustion in recent 10 years,with data mining,the acupoints screened from literature were analyzed.Results A total of 803 articles were included finally.Conception vessel,stomach meridian and bladder meridian were mostly selected,the acupoints were selected from the abdomen,the thigh/crus,the back and the arms.The top 5 aucpoints with high frequency were Zúsānǐ(足三里ST36),Zhōngwǎn(中脘CV12),Wèishū(胃俞BL21)(332),Píshū(脾俞BL20)and Nèiguān(内关PC6).The top 5 acupoint combinations with high frequency included CV12 combined with ST36,BL21 with CV12,BL21 with ST35 and BL20 with CV12.The mostly used specific points were front-mu point,he-sea point,crossing point and back-shu point.Conclusion In treatment of chronic gastritis with acupuncture and moxibustion,conception vessel,stomach meridian and bladder meridian are particularly selected in combination and the specific points with duplicate effect are mostly selected,especially focusing on the application of front-mu point.
基金the National Natural Science Founda-tion of China (No. 70471022)the NSFC / Hong KongResearch Grant Council (No. 70418013)
文摘Customer requirements analysis is the key step for product variety design of mass customiza-tion(MC). Quality function deployment (QFD) is a widely used management technique for understanding the voice of the customer (VOC), however, QFD depends heavily on human subject judgment during extracting customer requirements and determination of the importance weights of customer requirements. QFD pro-cess and related problems are so complicated that it is not easily used. In this paper, based on a general data structure of product family, generic bill of material (GBOM), association rules analysis was introduced to construct the classification mechanism between customer requirements and product architecture. The new method can map customer requirements to the items of product family architecture respectively, accomplish the mapping process from customer domain to physical domain directly, and decrease mutual process between customer and designer, improve the product design quality, and thus furthest satisfy customer needs. Finally, an example of customer requirements mapping of the elevator cabin was used to illustrate the proposed method.
基金Projects(10871031, 60474070) supported by the National Natural Science Foundation of ChinaProject(07A001) supported by the Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.
文摘The traditional generalization-based knowledge discovery method is introduced. A new kind of multilevel spatial association of the rules mining method based on the cloud model is presented. The cloud model integrates the vague and random use of linguistic terms in a unified way. With these models, spatial and nonspatial attribute values are well generalized at multiple levels, allowing discovery of strong spatial association rules. Combining the cloud model based method with Apriori algorithms for mining association rules from a spatial database shows benefits in being effective and flexible.
文摘In order to discover the main causes of elevator group accidents in edge computing environment, a multi-dimensional data model of elevator accident data is established by using data cube technology, proposing and implementing a method by combining classical Apriori algorithm with the model, digging out frequent items of elevator accident data to explore the main reasons for the occurrence of elevator accidents. In addition, a collaborative edge model of elevator accidents is set to achieve data sharing, making it possible to check the detail of each cause to confirm the causes of elevator accidents. Lastly the association rules are applied to find the law of elevator Accidents.
基金Under the auspices of Special Fund of Ministry of Land and Resources of China in Public Interest(No.201511001)
文摘Association rule mining methods, as a set of important data mining tools, could be used for mining spatial association rules of spatial data. However, applications of these methods are limited for mining results containing large number of redundant rules. In this paper, a new method named Geo-Filtered Association Rules Mining(GFARM) is proposed to effectively eliminate the redundant rules. An application of GFARM is performed as a case study in which association rules are discovered between building land distribution and potential driving factors in Wuhan, China from 1995 to 2015. Ten sets of regular sampling grids with different sizes are used for detecting the influence of multi-scales on GFARM. Results show that the proposed method can filter 50%–70% of redundant rules. GFARM is also successful in discovering spatial association pattern between building land distribution and driving factors.
基金Capital project for application and promotion of clinical researches(No.Z171100001017123)Capital specialized scientific research proect of health development for young excellent talents(No.2018-4-4078)。
文摘Objective:Based on data mining software,applying frequent itemsets,association rules,hierarchical clustering,complex networks and other data mining methods to analyze the usage and compatibility of traditional Chinese medicine(TCM)patent compound for functional dyspepsia.Method:Use the Chinese patent database to search the compound for the treatment of functional dyspepsia,exclude traditional Chinese medicine extracts,single drugs,combined use of Chinese and Western medicines,etc.,screen the patented compound of TCM,establish an Excel data table,and apply data mining software to The data is subjected to frequency statistics,association rules,cluster analysis and complex network analysis.Result:A total of 238 prescriptions for functional dyspepsia were screened.The four qi of the drugs were mainly warm and calm,the five flavors were mainly sweet and spicy,and the spleen and stomach were the main meridians.The top 10 Chinese medicines with higher frequency are Shanzha、Chenpi、Gancao、Maiya、Jineijin、Fuling、Baizhu、Shenqu、Houpo、Banxia;frequent itemsets show that the drugs are mainly compatible with qi and spleen,qi and digestion;association rules The analysis shows that the common drug pairs used in the treatment of functional dyspepsia include Chenpi-Shanzha、Maiya-Shanzha、Jineijin-Shanzha,etc.;cluster analysis found that there are 4 types of drugs for functional dyspepsia,mainly including drugs for regulating qi-flowing for harmonizing stomach,drugs for soothing liver and promoting Qi,drugs for eliminating food and resolving accumulation,drugs for benefiting qi and strengthening spleen;the 22-flavor Chinese medicine in the core drug network,the core compatibility is mainly to eliminate stagnation and spleen.Conclusion:Data mining research provides a reference for the clinical treatment of functional dyspepsia and the development of TCM formulas;Clinical treatment of functional dyspepsia should grasp the basic principles of strengthening vital energy and eliminating pathogenic factors to benefit qi,strengthen the spleen,and eliminate food.It is a basic treatment method,taking into account the methods of regulating qi-flowing for harmonizing stomach,soothing the liver and relieving depression,relieving dampness and dampness,and combining the specific conditions of patients with syndrome differentiation and treatment.
文摘This paper is aimed to develop an algorithm for extracting association rules,called Context-Based Association Rule Mining algorithm(CARM),which can be regarded as an extension of the Context-Based Positive and Negative Association Rule Mining algorithm(CBPNARM).CBPNARM was developed to extract positive and negative association rules from Spatiotemporal(space-time)data only,while the proposed algorithm can be applied to both spatial and non-spatial data.The proposed algorithm is applied to the energy dataset to classify a country’s energy development by uncovering the enthralling interdependencies between the set of variables to get positive and negative associations.Many association rules related to sustainable energy development are extracted by the proposed algorithm that needs to be pruned by some pruning technique.The context,in this paper serves as a pruning measure to extract pertinent association rules from non-spatial data.Conditional Probability Increment Ratio(CPIR)is also added in the proposed algorithm that was not used in CBPNARM.The inclusion of the context variable and CPIR resulted in fewer rules and improved robustness and ease of use.Also,the extraction of a common negative frequent itemset in CARM is different from that of CBPNARM.The rules created by the proposed algorithm are more meaningful,significant,relevant and insightful.The accuracy of the proposed algorithm is compared with the Apriori,PNARM and CBPNARM algorithms.The results demonstrated enhanced accuracy,relevance and timeliness.
基金supported by the National Natural Science Foundation of China (No. J07240003, No. 60773084, No. 60603023)National Research Fund for the Doctoral Program of Higher Education of China (No. 20070151009)
文摘The typical model, which involves the measures: support, confidence, and interest, is often adapted to mining association rules. In the model, the related parameters are usually chosen by experience; consequently, the number of useful rules is hard to estimate. If the number is too large, we cannot effectively extract the meaningful rules. This paper analyzes the meanings of the parameters and designs a variety of equations between the number of rules and the parameters by using regression method. Finally, we experimentally obtain a preferable regression equation. This paper uses multiple correlation coeficients to test the fitting efiects of the equations and uses significance test to verify whether the coeficients of parameters are significantly zero or not. The regression equation that has a larger multiple correlation coeficient will be chosen as the optimally fitted equation. With the selected optimal equation, we can predict the number of rules under the given parameters and further optimize the choice of the three parameters and determine their ranges of values.
文摘Aiming at the research that using more new knowledge to develope knowledge system with dynamic accordance, and under the background of using Fuzzy language field and Fuzzy language values structure as description framework, the generalized cell Automation that can synthetically process fuzzy indeterminacy and random indeterminacy and generalized inductive logic causal model is brought forward. On this basis, a kind of the new method that can discover causal association rules is provded. According to the causal information of standard sample space and commonly sample space, through constructing its state (abnormality) relation matrix, causal association rules can be gained by using inductive reasoning mechanism. The estimate of this algorithm complexity is given,and its validiw is proved through case.
文摘As data mining more and more popular applied in computer system,the quality as-surance test of its software would be get more and more attention.However,because of the ex-istence of the 'oracle' problem,the traditional test method is not ease fit for the application program in the field of the data mining.In this paper,based on metamorphic testing,a software testing method is proposed in the field of the data mining,makes an association rules algorithm as the specific case,and constructs the metamorphic relation on the algorithm.Experiences show that the method can achieve the testing target and is feasible to apply to other domain.