A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of inter...A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time- domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approxi- mately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigen- vectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three- component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical vi...Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.展开更多
To aim at the problem that the horizontal directivity index of the vector hy- drophone vertical array is not higher than that of a vector hydrophone, the high-resolution azimuth estimation algorithm based on the data ...To aim at the problem that the horizontal directivity index of the vector hy- drophone vertical array is not higher than that of a vector hydrophone, the high-resolution azimuth estimation algorithm based on the data fusion method was presented. The proposed algorithnl first employs MUSIC algorithm to estimate the azimuth of each divided sub-band signal, and then the estimated azimuths of multiple hydrophones are processed by using the data fusion technique. The high-resolution estimated result is achieved finally by adopting the weighted histogram statistics method. The results of the simulation and sea trials indicated that the proposed algorithm has better azimuth estimation performance than MUSIC algorithm of a single vector hydrophone and the data fusion technique based on the acoustic energy flux method. The better performance is reflected in the aspects of the estimation precision, the probability of correct estimation, the capability to distinguish multi-objects and the inhibition of the noise sub-bands.展开更多
In this paper, we have preliminarily studied the application of ARGO (Arrayfor Real-time Geostrophic Oceanography) data to the Global Ocean Data Assimilation System ofNational Climate Center of China (NCC-GODAS), whic...In this paper, we have preliminarily studied the application of ARGO (Arrayfor Real-time Geostrophic Oceanography) data to the Global Ocean Data Assimilation System ofNational Climate Center of China (NCC-GODAS), which mainly contains 4 sub-systems such as datapreprocessing, real-time wind stress calculating, variational analysis and interpolating, and oceandynamic model. For the sake of using ARGO data, the relevant adjustment and improvement have beenmade at the corresponding aspects in the subsystems. Using the observation data from 1981 to 2003including the ARGO data of 2001 to July. 2003, we have performed a series of numerical experimentson this system. Comparing with the corresponding results of NCEP, It is illustrated that using ARGOdata can improve the results of NCC-GODAS in the region of the Middle Pacific, for instance SST,SSTA (SST anomalies), Nino index, sea sub-surface temperature, etc. Furthermore, it is obtained thatNCC-GODAS benefits from ARGO data in the other regions such as Atlantic Ocean, Indian Ocean, andextratropical Pacific Ocean much more than in the tropical Pacific.展开更多
文摘A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time- domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approxi- mately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigen- vectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three- component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金partly supported by the JSPS Grant-in-Aid for Scientific Research #17300032
文摘Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.
基金the leaders of the State Key Laboratory of Acoustics Institute of Acoustics,Chinese Academy of Sciences,for their project support
文摘To aim at the problem that the horizontal directivity index of the vector hy- drophone vertical array is not higher than that of a vector hydrophone, the high-resolution azimuth estimation algorithm based on the data fusion method was presented. The proposed algorithnl first employs MUSIC algorithm to estimate the azimuth of each divided sub-band signal, and then the estimated azimuths of multiple hydrophones are processed by using the data fusion technique. The high-resolution estimated result is achieved finally by adopting the weighted histogram statistics method. The results of the simulation and sea trials indicated that the proposed algorithm has better azimuth estimation performance than MUSIC algorithm of a single vector hydrophone and the data fusion technique based on the acoustic energy flux method. The better performance is reflected in the aspects of the estimation precision, the probability of correct estimation, the capability to distinguish multi-objects and the inhibition of the noise sub-bands.
基金Supported by the National Natural Science Foundation of China under Grant No. 40231014.
文摘In this paper, we have preliminarily studied the application of ARGO (Arrayfor Real-time Geostrophic Oceanography) data to the Global Ocean Data Assimilation System ofNational Climate Center of China (NCC-GODAS), which mainly contains 4 sub-systems such as datapreprocessing, real-time wind stress calculating, variational analysis and interpolating, and oceandynamic model. For the sake of using ARGO data, the relevant adjustment and improvement have beenmade at the corresponding aspects in the subsystems. Using the observation data from 1981 to 2003including the ARGO data of 2001 to July. 2003, we have performed a series of numerical experimentson this system. Comparing with the corresponding results of NCEP, It is illustrated that using ARGOdata can improve the results of NCC-GODAS in the region of the Middle Pacific, for instance SST,SSTA (SST anomalies), Nino index, sea sub-surface temperature, etc. Furthermore, it is obtained thatNCC-GODAS benefits from ARGO data in the other regions such as Atlantic Ocean, Indian Ocean, andextratropical Pacific Ocean much more than in the tropical Pacific.