Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurren...Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurrence scheme, named gyroscopic Arnoldi reduction algorithm has been obtained, which is even simpler than the Lanczos algorithm for symmetric eigenvalue problems. The complex number computation is completely avoided. A restart technique is used to enable the reduction algorithm to have iterative characteristics. It has been found that the restart technique is not only effective for the convergence of multiple eigenvalues but it also furnishes the reduction algorithm with a technique to check and compute missed eigenvalues. By combining it with the restart technique, the algorithm is made practical for large-scale gyroscopic eigenvalue problems. Numerical examples are given to demonstrate the effectiveness of the method proposed.展开更多
In this paper, we develop an implicitly restarted block Arnoldi algorithm in a vector-wise fashion. The vector-wise construction greatly simplifies both the detection of necessary deflation and the actual deflation it...In this paper, we develop an implicitly restarted block Arnoldi algorithm in a vector-wise fashion. The vector-wise construction greatly simplifies both the detection of necessary deflation and the actual deflation itself, so it is preferable to the block-wise construction. The numerical experiment shows that our algorithm is effective.展开更多
基金This research is supported by The National Science FoundationThe Doctoral Training Foundation
文摘Based on Arnoldi's method, a version of generalized Arnoldi algorithm has been developed for the reduction of gyroscopic eigenvalue problems. By utilizing the skew symmetry of system matrix, a very simple recurrence scheme, named gyroscopic Arnoldi reduction algorithm has been obtained, which is even simpler than the Lanczos algorithm for symmetric eigenvalue problems. The complex number computation is completely avoided. A restart technique is used to enable the reduction algorithm to have iterative characteristics. It has been found that the restart technique is not only effective for the convergence of multiple eigenvalues but it also furnishes the reduction algorithm with a technique to check and compute missed eigenvalues. By combining it with the restart technique, the algorithm is made practical for large-scale gyroscopic eigenvalue problems. Numerical examples are given to demonstrate the effectiveness of the method proposed.
基金This work is supported by National Natural Science Foundation of China No. 10531080.
文摘In this paper, we develop an implicitly restarted block Arnoldi algorithm in a vector-wise fashion. The vector-wise construction greatly simplifies both the detection of necessary deflation and the actual deflation itself, so it is preferable to the block-wise construction. The numerical experiment shows that our algorithm is effective.