期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Superior specific capacity and energy density simultaneously achieved by Sr/In co-deposition behavior of Mg-Sr-In ternary alloys as anodes for Mg-Air cells 被引量:2
1
作者 Bowen Yu Haitao Jiang Yun Zhang 《Journal of Magnesium and Alloys》 2025年第2期640-653,共14页
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid... In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output. 展开更多
关键词 Mg-air cells CO-DEPOSITION anode/electrolyte interface Anodic efficiency Discharge performance
在线阅读 下载PDF
Enhancing Mg-air battery discharge performance with AZ31 anodes using complexing agents as electrolyte additives
2
作者 Xue-ning LI Chen-chen ZHAO +4 位作者 Shu-bo LI Mei WAN Xian DU Ke LIU Wen-bo DU 《Transactions of Nonferrous Metals Society of China》 2025年第11期3697-3713,共17页
The addition of complexing agents to the electrolyte has been shown to be an effective method to enhance the discharge performance of magnesium-air batteries.In this work,four complexing agents:citric acid(CIT),salicy... The addition of complexing agents to the electrolyte has been shown to be an effective method to enhance the discharge performance of magnesium-air batteries.In this work,four complexing agents:citric acid(CIT),salicylic acid(SAL),2,6-dihydroxybenzoic acid(2,6-DHB),and 5-sulfoisophthalic acid(5-sulfoSAL)were selected as potential candidates.Through electrochemical tests,full-cell discharge experiments,and physicochemical characterization,the impact of these complexing agents on the discharge performance of magnesium-air batteries using AZ31 alloy as the anode material was investigated.The results demonstrated that the four complexing agents increased the discharge voltage of the batteries.Notably,SAL could significantly improve the anodic efficiency and the discharge specific capacity,achieving an anodic efficiency of 60.3%and a specific capacity of 1358.3 mA·h/g at a discharge current density of 10 mA/cm^(2). 展开更多
关键词 Mg-air batteries electrolyte additives complexing agent discharge voltage anodic efficiency
在线阅读 下载PDF
Research progress of magnesium anodes and their applications in chemical power sources 被引量:12
3
作者 王乃光 王日初 +3 位作者 彭超群 胡程旺 冯艳 彭兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2427-2439,共13页
Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the ... Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed. 展开更多
关键词 magnesium anode discharge activity anodic efficiency activation mechanism ELECTROLYTE
在线阅读 下载PDF
Sacrificial Anode Stability and Polarization Potential Variation in a Ternary Al-xZn-xMg Alloy in a Seawater-Marine Environment 被引量:1
4
作者 Abubakar Muazu Yaro Shehu Aliyu +1 位作者 Malik Abdulwahab Abimbola Patricia Idowu Popoola 《Journal of Marine Science and Application》 CSCD 2016年第2期208-213,共6页
In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ... In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency. 展开更多
关键词 sacrificial anode anode efficiency protection efficiency polarization potential intermetallic phase alloying elements theoretical current capacity flee electron seawater surface films
在线阅读 下载PDF
Microstructure design of advanced magnesium-air battery anodes 被引量:4
5
作者 Xu Huang Qingwei Dai +4 位作者 Qing Xiang Na Yang Gaopeng Zhang Ao Shen Wanming Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期443-464,共22页
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de... Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode. 展开更多
关键词 MAGNESIUM Air battery anode MICROSTRUCTURE Anodic efficiency
在线阅读 下载PDF
Improving the Intermittent Discharge Performance of Mg–Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive 被引量:9
6
作者 Yan-Chun Zhao Guang-Sheng Huang +3 位作者 Gui-lin Gong Ting-Zhuang Han Da-Biao Xia Fu-Sheng Pan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第11期1019-1024,共6页
A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that... A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery. 展开更多
关键词 Mg alloys CORROSION Mg-air battery Intermittent discharge performance anode efficiency
原文传递
Magnesium-rare earth intermetallic compounds for high performance high power aqueous Magnesium-Air batteries 被引量:1
7
作者 Bingjie Ma Liuzhang Ouyang Jie Zheng 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4191-4204,共14页
Magnesium alloys are light structural materials and promising anode candidates for Mg-air batteries.However,application of Mg-air batteries is limited by poor performance at large current density and severe H2 generat... Magnesium alloys are light structural materials and promising anode candidates for Mg-air batteries.However,application of Mg-air batteries is limited by poor performance at large current density and severe H2 generation side reactions.In this study,we pioneered magnesium-rare earth Mg_(3)RE(RE=La,Ce,Pr and Nd)intermetallic compounds as anodes to provide higher power density and more stable discharge performance.Especially,Mg_(3)Pr alloy exhibits high discharge voltage of 0.91 V and peak power density of 54.4 mW cm^(−2) at 60 mA cm^(−2) with anodic efficiency of 60%,far better than other Mg alloys.We reveal an activation mechanism of Mg_(3)RE-based anodes during discharge,which significantly accelerates mass transfer process as well as enhances discharge activity.The results improve the performance of high-power Mg-air batteries and promote the value-added application of abundant rare earth elements such as Ce and La. 展开更多
关键词 Mg-air batteries Intermetallic compounds Rare earth Anodic efficiency Discharge activity
在线阅读 下载PDF
Experimental study of the anode injection efficiency reduction of 3.3-kV-class NPT-IGBTs due to backside processes
8
作者 Jiang Huaping Zhang Bo +3 位作者 Liu Chuang Chen Wanjun Rao zugang Dong Bin 《Journal of Semiconductors》 EI CAS CSCD 2012年第2期41-44,共4页
The anode injection efficiency reduction of 3.3-kV-class non-punch-through insulated-gate bipolar transistors (NPT-IGBTs) due to backside processes is experimentally studied through comparing the forward blocking ca... The anode injection efficiency reduction of 3.3-kV-class non-punch-through insulated-gate bipolar transistors (NPT-IGBTs) due to backside processes is experimentally studied through comparing the forward blocking capabilities of the experiments and the theoretical breakdown model in this paper.Wafer lifetimes are measured by aμ-PCD method,and well designed NPT-IGBTs with a final wafer thickness of 500μm are fabricated.The test results show higher breakdown voltages than the theoretical breakdown model in which anode injection efficiency reduction is not considered.This indicates that anode injection efficiency reduction must be considered in the breakdown model.Furthermore,the parameters related to anode injection efficiency reduction are estimated according to the experimental data. 展开更多
关键词 non-punch-through IGBT anode injection efficiency reduction breakdown voltage
原文传递
Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode
9
作者 刘美琴 李博轮 +2 位作者 刘纯亮 Fuks MIKHAIL Edl SCHAMILOGLU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期64-70,共7页
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli... Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious. 展开更多
关键词 secondary electron and backscattered electron emission relativistic magnetron mode competition critical magnetic field output power anode current electronic efficiency transparent cathode solid cathode
在线阅读 下载PDF
Evaluation of new large area PMT with high quantum efficiency 被引量:2
10
作者 雷祥翠 衡月昆 +16 位作者 钱森 夏经铠 刘术林 吴智 闫保军 徐美杭 王铮 李小男 阮向东 王小状 杨玉真 王文文 方灿 罗凤姣 梁静静 杨露萍 杨彪 《Chinese Physics C》 SCIE CAS CSCD 2016年第2期54-59,共6页
The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use... The neutrino detector of the Jiangmen Underground Neutrino Observatory(JUNO) is designed to use20 kilotons of liquid scintillator and approximately 16000 20 inch photomultipliers(PMTs).One of the options is to use the 20 inch R12860 PMT with high quantum efficiency which has recently been developed by Hamamatsu Photonics.The performance of the newly developed PMT preproduction samples is evaluated.The results show that its quantum efficiency is 30%at 400 nm.Its Peak/Valley(P/V) ratio for the single photoelectron is 4.75 and the dark count rate is 27 kHz at the threshold of 3 mV while the gain is at 1 × 10^7.The transit time spread of a single photoelectron is 2.86 ns.Generally the performances of this new 20 inch PMT are improved over the old one of R3600. 展开更多
关键词 PMT quantum efficiency gain anode dark count rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部