期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
A capture probability analytic model for the electromagnetic launched anti-torpedo torpedo 被引量:3
1
作者 Bao-qi Wu Xiao-cun Guan +1 位作者 Shao-hua Guan Jing-bin Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期261-270,共10页
With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of t... With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed. 展开更多
关键词 Electromagnetic launch Anti-torpedo torpedo analytic model Dispersion variance Integral boundary
在线阅读 下载PDF
Analytic model of deformation of construction interfaces of rolled control concrete dam
2
作者 顾冲时 黄光明 赖道平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第1期79-86,共8页
The construction interfaces of RCCD have a distinct influence on the deformation of dams. The characters and rules on deformation of construction interfaces are studied. The methods simulating the deformation of the i... The construction interfaces of RCCD have a distinct influence on the deformation of dams. The characters and rules on deformation of construction interfaces are studied. The methods simulating the deformation of the interfaces at different stages are proposed. A thickness analytic model and a no-thickness analytic model of construction interfaces are built. These models can reflect the elastic deformation, the attenuation creep deformation, the irreversible creep deformation and the accelerating creep defor- mation of interfaces. The example shows that these proposed models can simulate the deformation of the dam structure objectively. Especially, the results of the thickness analytic model which simulates the gradual changing regularities of interfaces can tally with those of monitoring in situ preferably. The methods proposed and the analytic models can be generalized and applied to general concrete dams, especially to the analysis on deformation rules of fault and interlayer in dam base. 展开更多
关键词 RCCD construction interface DEFORMATION analytic model
在线阅读 下载PDF
Prediction of the Biaxial Failure Strength of Composite Laminates with Unit Cell Analytic Model
3
作者 赵琳 ZHANG Boming QING Xinlin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第5期923-927,共5页
A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composit... A new method to predict the ultimate strength of fiber reinforced composites under arbitrary load condition is introduced. The micromechanics strength theory is used to perform the final failure prediction of composite laminates. The theory is based on unit cell analytic model which can provide the ply composite material properties by only using the constituent fiber and matrix properties and the laminate geometric parameters without knowing any experimental information of the laminates. To show that this method is suitable for predicting the strength of composite laminates, the micromechanics strength theory is ranked by comparing it with all the micro-level and the best two macro-level theories chosen from the World Wide Failure Exercise. The results show that this method can be used for predicting strength of any composite laminates and provide a direct reference for composite optimum design. 展开更多
关键词 COMPOSITES STRENGTH failure criteria unit cell analytic model
原文传递
An analytic model for gate-all-around silicon nanowire tunneling field effect transistors
4
作者 刘颖 何进 +6 位作者 陈文新 杜彩霞 叶韵 赵巍 吴文 邓婉玲 王文平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期369-374,共6页
An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band ... An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane's expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results. 展开更多
关键词 gate-all-round nanowire tunneling field effect transistor band to band tunneling analytic model
原文传递
Thermal analytic model of current gain for bipolar junction transistor-bipolar static induction transistor compound device
5
作者 张有润 张波 +2 位作者 李泽宏 赖昌菁 李肇基 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期763-767,共5页
This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best the... This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃. 展开更多
关键词 bipolar junction transistor-bipolar static induction transistor thermal analytic model current gain
原文传递
Geometric size and forming force prediction in incremental flanging:A new analytical model 被引量:1
6
作者 Chong TIAN Dawei ZHANG +1 位作者 Guangcan YANG Shengdun ZHAO 《Chinese Journal of Aeronautics》 2025年第2期519-540,共22页
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca... A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained. 展开更多
关键词 Incremental flanging analytical model Strain characteristic Geometric size Forming force
原文传递
Analytical Modeling of Selective Laser-Melting Temperature of AlSi10Mg Alloy
7
作者 Xiaobo Yang Zhihui Zhang +6 位作者 Man Zhao Bo Qian Jian Mao Gang Liu Liqiang Zhang Yixuan Feng Steven Y.Liang 《Additive Manufacturing Frontiers》 2025年第3期169-181,共13页
Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aeros... Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aerospace and automotive industries,which require lightweight structures with superior thermal and mechanical properties.The thermal load induces residual tensile stress,leading to a decline in the geometric accuracy of the workpiece and causing cracks that reduce the fatigue life of the alloy.The rapid movement of the laser heat source during the material formation creates a localized and inhomogeneous temperature field in the powder bed.Significant temperature gradients are generated,resulting in thermal stresses and distortions within the part,affecting the quality of the molding.Therefore,understanding the effects of processing parameters and scanning strategies on the temperature field in SLM is crucial.To address these issues,this study proposes a multiscale method for predicting the complex transient temperature field during the manufacturing process based on the heat-conduction equation.Considering the influence of temperature on the material properties,a temperature-prediction model for discontinuous scanning paths in SLM and a temperature field-calculation model for irregular scanning paths are developed.The models are validated using finite-element results and are in excellent agreement.The analytical model is then used to investigate the effects of the laser power,scanning speed,and scanning spacing on the temperature distribution.The results reveal that the peak temperature decreases exponentially with increasing scanning speed and increases linearly with increasing laser power.In addition,with increasing scanning spacing,the peak temperature of the adjacent tracks near the observation point decreases linearly.These findings are critical for optimizing the SLM-process parameters and improving the material-forming quality. 展开更多
关键词 analytical model Selective laser melting Temperature distribution Heat-source modeling AlSi10Mg alloy Scanning strategy
在线阅读 下载PDF
Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries
8
作者 Jin Xue Boyun Guo 《Computer Modeling in Engineering & Sciences》 2025年第9期3307-3328,共22页
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis... Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations. 展开更多
关键词 Spontaneous imbibition capillary flow pore geometry triangular-star channel analytical model
在线阅读 下载PDF
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing 被引量:1
9
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation analytical model
在线阅读 下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
10
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
An improved model of the Pasternak foundation beam umbrella arch considering the generalized shear force
11
作者 CHEN Lei JIA Chao-jun +3 位作者 LEI Ming-feng HE Yan-chun SHI Cheng-hua LI Ao 《Journal of Central South University》 2025年第4期1503-1519,共17页
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ... The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite. 展开更多
关键词 elastic foundation beam Pasternak foundation generalized shear umbrella arch analytical model
在线阅读 下载PDF
Design and Optimization of Terracotta Tube-Based Direct Evaporative Cooling Exchanger: An Analytical Approach to Heat and Mass Transfer
12
作者 Windnigda Zoungrana Makinta Boukar +2 位作者 Ousmane Coulibaly Guy Christian Tubreoumya Antoine Bere 《Open Journal of Applied Sciences》 2025年第1期352-373,共22页
This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass ... This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers. 展开更多
关键词 analytical modeling Porous Terracotta Tube Direct Evaporative Cooling Heat and Mass Exchanger Performance Optimization
在线阅读 下载PDF
Extension of analytical model of solid-state phase transformation 被引量:1
13
作者 姜伊辉 刘峰 宋韶杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1176-1181,共6页
Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial t... Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model. 展开更多
关键词 non-isothermal transformation analytical model initial transformation temperature APPROXIMATION
在线阅读 下载PDF
Analytical model for power dissipation in cell membranes in suspensions exposed to electric fields
14
作者 覃玉荣 江悦华 赖声礼 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期145-148,共4页
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro... Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane. 展开更多
关键词 power dissipation analytical model cell suspension external electricfields
暂未订购
Analytic modeling of instabilities driven by higher-order modes in the HLS Ⅱ RF system with a higher-harmonic cavity
15
作者 赵宇宁 李为民 +1 位作者 吴丛凤 王琳 《Chinese Physics C》 SCIE CAS CSCD 2013年第8期73-75,共3页
The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam insta- bilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase I[ project of the... The utility of a passive fourth-harmonic cavity plays a key role in suppressing longitudinal beam insta- bilities in the electron storage ring and lengthens the bunch by a factor of 2.6 for the phase I[ project of the Hefei Light Source (HLS II ). Meanwhile, instabilities driven by higher-order modes (HOM) may limit the performance of the higher-harmonic cavity. In this paper, the parasitic coupled-bunch instability, which is driven by narrow band parasitic modes, and the microwave instability, which is driven by broadband HOM, are both modeled analytically. The analytic modeling results are in good agreement with those of our previous simulation study and indicate that the passive fourth-harmonic cavity suppresses parasitic coupled-bunch instabilities and microwave instability. The modeling suggests that a fourth-harmonic cavity may be successfully used at the HLS II. 展开更多
关键词 parasitic coupled-bunch instability microwave instability higher-harmonic cavity analytic modeling higher-order mode
原文传递
An Analytical Model of Electron Mobility for Strained-Si Channel nMOSFETs 被引量:1
16
作者 李小健 谭耀华 田立林 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期863-868,共6页
An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is sui... An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is suitable for (100〉/ 〈110) channel nMOSFETs under biaxial or (100〉/〈 110 ) uniaxial stress and can be implemented in conventional device simulation tools . 展开更多
关键词 STRAINED-SI electron mobility analytical model NMOSFET uniaxial stress/strain
在线阅读 下载PDF
Cutting tool temperature prediction method using analytical model for end milling 被引量:7
17
作者 Wu Baohai Cui Di +2 位作者 He Xiaodong Zhang Dinghua Tang Kai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1788-1794,共7页
Dramatic tool temperature variation in end milling can cause excessive tool wear and shorten its life, especially in machining of difficult-to-machine materials. In this study, a new analytical model-based method for ... Dramatic tool temperature variation in end milling can cause excessive tool wear and shorten its life, especially in machining of difficult-to-machine materials. In this study, a new analytical model-based method for the prediction of cutting tool temperature in end milling is presented.The cutting cycle is divided into temperature increase and decrease phases. For the temperature increase phase, a temperature prediction model considering real friction state between the chip and tool is proposed, and the heat flux and tool-chip contact length are then obtained through finite element simulation. In the temperature decrease phase, a temperature decrease model based on the one-dimension plate heat convection is proposed. A single wire thermocouple is employed to measure the tool temperature in the conducted milling experiments. Both of the theoretical and experimental results are obtained with cutting conditions of the cutting speed ranging from 60 m/min to100 m/min, feed per tooth from 0.12 mm/z to 0.20 mm/z, and the radial and axial depth of cut respectively being 4 mm and 0.5 mm. The comparison results show high agreement between the physical cutting experiments and the proposed cutting tool temperature prediction method. 展开更多
关键词 analytical model Cutting tool End milling Temperature prediction Tool temperature
原文传递
Semi analytical modeling of springback in arc bending and effect of forming load 被引量:8
18
作者 S.K.PANTHI N.RAMAKRISHNAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2276-2284,共9页
The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated ... The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal.In addition,the applied load during the bending also has a significant influence.Although a number of numerical techniques have been used for this purpose,only few analytical models that can provide insight into the phenomenon are available.A phenomenological model for predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches.The results of the analytical model were compared with the published experimental as well as FE results of the authors,and the agreement was found to be satisfactory. 展开更多
关键词 SPRINGBACK sheet metal bending finite element simulation analytical modeling
在线阅读 下载PDF
Roll Flattening Analytical Model in Flat Rolling by Boundary Integral Equation Method 被引量:7
19
作者 XIAO Hong YUAN Zheng-wen WANG Tao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第10期39-45,共7页
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c... In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges. 展开更多
关键词 roll flattening analytical model finite length semi-infinite body boundary integral equation method fi- nite element method
原文传递
A 2.5-dimensional Analytical Model of Cold Leveling for Plates with Transverse Wave Defects 被引量:5
20
作者 Wei-hua CHEN Juan LIU +2 位作者 Zhen-shan CUI Ying-jie WANG Ying-rui WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第8期664-671,共8页
Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be e... Waves occurring in cold-rolled plates or sheets can be divided into longitudinal and transverse waves. Classical leveling theories merely solve the problem of longitudinal waves, while no well accepted method can be employed for transverse waves. In order to investigate the essential deformation law of leveling for plates with transverse waves, a 2.5-dimensional (2.5- D) analytical approach was proposed. In this model, the plate was transversely divided into some strips with equal width; the strips are considered to be in the state of plane strain and each group of adjacent strips are assumed to be deformation compatible under stress. After calculation, the bending deformation of each strip and the leveling effect of overall plate were obtained by comprehensNe consideration of various strips along with the width. Bending of roller is a main approach to eliminate the transverse waves, which is widely accepted by the industry, but the essential effect of bending of roller on the deformation of plates and the calculation of bending of roller are unknown. According to the 2.5-D analytical model, it can be found that, for plates, it is neutral plane offsetting and middle plane elongation or contraction under inner stress that can effectively improve plate shape. Taking double side waves as an example, the appropriate values of bending of roller were obtained by the 2.5-D analytical model related to different initial unevenness, which was applicable to the current on-line adjusting of bending of roller in rolling industry. 展开更多
关键词 plate leveling 2.5-dimensional analytical model transverse wave middle plane deformation
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部