With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in m...Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.展开更多
Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not...Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.展开更多
Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to ...Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.展开更多
The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operationa...The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning.展开更多
Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network r...Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network repeatedly with low calculational efficiency. In this paper, the Marquardt algorithm is incorporated into the OBD algorithm and a new method for pruning network-the Dynamic Optimal Brain Damage (DOBD) is introduced. This algorithm simplifies a network and obtains good generalization through dynamically deleting weight parameters with low sensitivity that is defined as the change of error function value with respect to the change of weights. Also a simplified method is presented through which sensitivities can be calculated during training with a little computation. A rule to determine the lower limit of sensitivity for deleting the unnecessary weights and other control methods during pruning and training are introduced. The training course is analyzed theoretically and the reason why DOBD algorithm can obtain a much faster training speed than the OBD algorithm and avoid overfitting effectively is given.展开更多
In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It...In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network.展开更多
A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduc...A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.展开更多
As computers have become faster at performing computations over the decades, algorithms to play games have also become more efficient. This research paper seeks to see how the performance of the Minimax search evolves...As computers have become faster at performing computations over the decades, algorithms to play games have also become more efficient. This research paper seeks to see how the performance of the Minimax search evolves on increasing Connect-4 grid sizes. The objective of this study is to evaluate the effectiveness of the Minimax search algorithm in making optimal moves under different circumstances and to understand how well the algorithm scales. To answer this question we tested and analyzed the algorithm several times on different grid sizes with a time limit to see its performance as the complexity increases, we also looked for the average search depth for each grid size. The obtained results show that despite larger grid sizes, the Minimax search algorithm stays relatively consistent in terms of performance.展开更多
针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始...针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始点与终点的最优路径。首先,引入基于地图障碍物分布评估策略和采样区域优化策略,根据地图的障碍物分布、数量调整算法的步长以及偏向概率。然后,伴随随机树的生长,更新随机点的采样区域,保证随机树向目标点生长。其次,将RRT算法与人工势场法结合,当随机树与障碍物发生碰撞时,使用人工势场法引导随机树节点生长避开障碍物,解决了RRT算法随机树生长到障碍物附近且朝目标点生长的方向被障碍物遮挡时随机树无法生长的问题。最后,利用节点修剪策略,把算法生成的初始路径中的冗余节点进行修剪,得到拐点更少、路径更简洁的优化路径。实验结果表明,PAAPF-RRT算法在路径规划时间上对于RRT算法、GB-RRT算法以及RRT*算法分别减少了93.64%、73.58%、93.28%,在迭代次数方面分别下降了91.40%、79.64%、90.58%,在路径长度方面只占其他3种算法的79.34%、86.21%、95.58%。展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by Northeast Agricultural University Doctoral Development FoundationChina Postdoctoral Science Foundation
文摘Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.
文摘Aimed at the great computing complexity of optimal brain surgeon (OBS) process, a pruning algorithm with penalty OBS process is presented. Compared with sensitive and regularized methods, the penalty OBS algorithm not only avoids time-consuming defect and low pruning efficiency in OBS process, but also keeps higher generalization and pruning accuracy than Levenberg-Marquardt method.
基金supported in part by National Natural Science Foundation of China (61101114, 61671324) the Program for New Century Excellent Talents in University (NCET-12-0401)
文摘Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.
文摘The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning.
文摘Overfitting is one of the important problems that restrain the application of neural network. The traditional OBD (Optimal Brain Damage) algorithm can avoid overfitting effectively. But it needs to train the network repeatedly with low calculational efficiency. In this paper, the Marquardt algorithm is incorporated into the OBD algorithm and a new method for pruning network-the Dynamic Optimal Brain Damage (DOBD) is introduced. This algorithm simplifies a network and obtains good generalization through dynamically deleting weight parameters with low sensitivity that is defined as the change of error function value with respect to the change of weights. Also a simplified method is presented through which sensitivities can be calculated during training with a little computation. A rule to determine the lower limit of sensitivity for deleting the unnecessary weights and other control methods during pruning and training are introduced. The training course is analyzed theoretically and the reason why DOBD algorithm can obtain a much faster training speed than the OBD algorithm and avoid overfitting effectively is given.
文摘In the first part of the article, a new algorithm for pruning networkDynamic Optimal Brain Damage(DOBD) is introduced. In this part, two cases and an industrial application are worked out to test the new algorithm. It is verified that the algorithm can obtain good generalization through deleting weight parameters with low sensitivities dynamically and get better result than the Marquardt algorithm or the cross-validation method. Although the initial construction of network may be different, the finial number of free weights pruned by the DOBD algorithm is similar and the number is just close to the optimal number of free weights. The algorithm is also helpful to design the optimal structure of network.
基金supported by the National High Technology Research and Development Program (863)of China (2012AA121602)the National Natural Science Foundation of China(11078001)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (20133218120037)the Fundamental Research Funds for the Central Universities under Grant(NS2014091)
文摘A novel gravity assist space pruning(GASP)algorithm based on image tools is proposed for solving interplanetary trajectory optimization problem.Compared with traditional GASP algorithm,the concept of image is introduced to avoid missing interesting solutions with appropriate number of function evaluations.Image tools allow us to evaluate the objective function in regions in place of points and provide an effective way to evaluate the forward and backward constraints for the multi-gravity assist trajectory optimization problem.Since the interesting solutions of the interplanetary trajectory optimization problem are often clustered in a small portion of the search space rather than being overall evenly distributed,the regionwise evaluations with image tools make the little large interval with the proper Lipschitzian tolerances sampling effective.The detailed steps of the proposed method are presented and two examples including Earth Venus Mars(EVM)transfer and Earth Venus Venus Earth Jupiter Saturn(EVVEJS)transfer are given.Finally,a comparison with solutions given by the literature demonstrates the effectiveness of the proposed method.
文摘As computers have become faster at performing computations over the decades, algorithms to play games have also become more efficient. This research paper seeks to see how the performance of the Minimax search evolves on increasing Connect-4 grid sizes. The objective of this study is to evaluate the effectiveness of the Minimax search algorithm in making optimal moves under different circumstances and to understand how well the algorithm scales. To answer this question we tested and analyzed the algorithm several times on different grid sizes with a time limit to see its performance as the complexity increases, we also looked for the average search depth for each grid size. The obtained results show that despite larger grid sizes, the Minimax search algorithm stays relatively consistent in terms of performance.
文摘针对快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法及其衍生算法路径规划时间长且规划效率低的问题,提出RRT算法与人工势场法结合的PAAPF-RRT机械臂路径规划算法,旨在最短的时间、最小的迭代次数内,在静态环境中找到连接起始点与终点的最优路径。首先,引入基于地图障碍物分布评估策略和采样区域优化策略,根据地图的障碍物分布、数量调整算法的步长以及偏向概率。然后,伴随随机树的生长,更新随机点的采样区域,保证随机树向目标点生长。其次,将RRT算法与人工势场法结合,当随机树与障碍物发生碰撞时,使用人工势场法引导随机树节点生长避开障碍物,解决了RRT算法随机树生长到障碍物附近且朝目标点生长的方向被障碍物遮挡时随机树无法生长的问题。最后,利用节点修剪策略,把算法生成的初始路径中的冗余节点进行修剪,得到拐点更少、路径更简洁的优化路径。实验结果表明,PAAPF-RRT算法在路径规划时间上对于RRT算法、GB-RRT算法以及RRT*算法分别减少了93.64%、73.58%、93.28%,在迭代次数方面分别下降了91.40%、79.64%、90.58%,在路径长度方面只占其他3种算法的79.34%、86.21%、95.58%。