In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant ...An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.展开更多
A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are...A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often ab...The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often abandoned when modeling larger systems because of its computational complexity. In this work, a twin support vector regression based stochastic simulations algorithm (TS^3A) is proposed by combining the twin support vector regression and SSA, the former is a well-known robust regression method in machine learning. Numerical results indicate that this proposed algorithm can be applied to a wide range of chemically reacting systems and obtain significant improvements on efficiency and accuracy with fewer simulating runs over the existing methods.展开更多
An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to ...An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.展开更多
The present study proposes a stochastic simulation scheme to model reactive boundaries through a position jump process which can be readily implemented into the Inhomogeneous Stochastic Simulation Algorithm by modifyi...The present study proposes a stochastic simulation scheme to model reactive boundaries through a position jump process which can be readily implemented into the Inhomogeneous Stochastic Simulation Algorithm by modifying the propensity of the diffusive jump over the reactive boundary. As compared to the literature, the present approach does not require any correction factors for the propensity. Also, the current expression relaxes the constraint on the compartment size allowing the problem to be solved with a coarser grid and therefore saves considerable computational cost. The modified algorithm is then applied to simulate three reaction-diffusion systems with reactive boundaries.展开更多
In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochast...In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm.展开更多
To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described for...To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,a chance constraint was introduced. A mathematical model was established with an objective function of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this problem could not be converted into its crisp equivalent,a hybrid simulated annealing(HSA) based on fuzzy simulation was put forward. Finally,simulation experiments were conducted under different confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective.展开更多
The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stres...The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.展开更多
Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at...Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at any moment within the VTW.However,different observation times demonstrate different cloud cover distributions,which exhibit different effects on the AEOS observation.Previous studies ignored pitch angles,discretized VTWs,or fixed cloud cover for every VTW,which led to the loss of intermediate observation states,thus these studies are not suitable for AEOS scheduling considering cloud cover distribution.In this study,a relationship formula between the cloud cover and observation time is proposed to calculate the cloud cover for every observation time,and a relationship formula between the observation time and pitch angle is designed to calculate the pitch angle for every observation time in the VTW.A refined model including the pitch angle,roll angle,and cloud cover distribution is established,which can make the scheme closer to the actual application of AEOSs.A hybrid genetic simulated annealing(HGSA)algorithm for AEOS scheduling is proposed,which integrates the advantages of genetic and simulated annealing algorithms and can effectively avoid falling into a local optimal solution.The experiments are conducted to compare the proposed algorithm with the traditional algorithms,the results verify that the proposed model and algorithm are efficient and effective for AEOS scheduling considering cloud cover distribution.展开更多
We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI tech...We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.展开更多
A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA ...A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA into the PA, which can prevent optimizing courses from trapping in local optima. The SAA-PA can effectively solve multimodal optimization in the distributed multi-pump Raman amplifier (DMRA). Optimal results show that, under the conditions of the on-off gain of 10 dB, the gain bandwidth of larger than 80 nm and the fiber length of 80 km, the gain ripple of less than 1.25 dB can be designed from the DMRA with only four backward pumps after the optimization of the proposed SAA-PA. Compared with the pure SAA, the SAA-PA can attain a lower gain ripple with the same number of pumps. Also, the relationship between the optimal signal bandwidth and the number of pumps can be simulated numerically with the SAA-PA.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a le...In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.展开更多
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annea...Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金the National Natural Science Foundation of China (No. 50747025)the Postdoctoral Science Foundation of China (No. 20060400648)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No. 2005383)the Shanghai Key Scienceand Technology Research Program (No. 041612012)
文摘An approach for the integrated optimization of the construction/expansion capacity of high-voltage/ medium-voltage (HV/MV) substations and the configuration of MV radial distribution network was presented using plant growth simulation algorithm (PGSA). In the optimization process, fixed costs correspondent to the investment in lines and substations and the variable costs associated to the operation of the system were considered under the constraints of branch capacity, substation capacity and bus voltage. The optimization variables considerably reduce the dimension of variables and speed up the process of optimizing. The effectiveness of the proposed approach was tested by a distribution system planning.
文摘A class of hybrid algorithms of real-time simulation based on evaluation of non-integerstep right-hand side function are presented in this paper. And some results of the convergence and stability of the algorithms are given. Using the class of algorithms, evaluation for the right-hand side function is needed once in every integration-step. Moreover, comparing with the other methods with the same amount of work, their numerical stability regions are larger and the method errors are smaller, and the numerical experiments show that the algorithms are very effective.
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
基金This work was supported by the National Natural Science Foundation of China (No.30871341), the National High-Tech Research and Development Program of China (No.2006AA02-Z190), the Shanghai Leading Academic Discipline Project (No.S30405), and the Natural Science Foundation of Shanghai Normal University (No.SK200937).
文摘The stochastic simulation algorithm (SSA) accurately depicts spatially homogeneous wellstirred chemically reacting systems with small populations of chemical species and properly represents noise, but it is often abandoned when modeling larger systems because of its computational complexity. In this work, a twin support vector regression based stochastic simulations algorithm (TS^3A) is proposed by combining the twin support vector regression and SSA, the former is a well-known robust regression method in machine learning. Numerical results indicate that this proposed algorithm can be applied to a wide range of chemically reacting systems and obtain significant improvements on efficiency and accuracy with fewer simulating runs over the existing methods.
基金This project is supported by National Natural Science Foundation of China (No.10572117)Aerospace Science Foundation of China(No.N3CH0502,No.N5CH0001)Provincial Natural Science Foundation of Shanxi, China(No.N3CS0501).
文摘An efficient importance sampling algorithm is presented to analyze reliability of complex structural system with multiple failure modes and fuzzy-random uncertainties in basic variables and failure modes. In order to improve the sampling efficiency, the simulated annealing algorithm is adopted to optimize the density center of the importance sampling for each failure mode, and results that the more significant contribution the points make to fuzzy failure probability, the higher occurrence possibility the points are sampled. For the system with multiple fuzzy failure modes, a weighted and mixed importance sampling function is constructed. The contribution of each fuzzy failure mode to the system failure probability is represented by the appropriate factors, and the efficiency of sampling is improved furthermore. The variances and the coefficients of variation are derived for the failure probability estimations. Two examples are introduced to illustrate the rationality of the present method. Comparing with the direct Monte-Carlo method, the improved efficiency and the precision of the method are verified by the examples.
文摘The present study proposes a stochastic simulation scheme to model reactive boundaries through a position jump process which can be readily implemented into the Inhomogeneous Stochastic Simulation Algorithm by modifying the propensity of the diffusive jump over the reactive boundary. As compared to the literature, the present approach does not require any correction factors for the propensity. Also, the current expression relaxes the constraint on the compartment size allowing the problem to be solved with a coarser grid and therefore saves considerable computational cost. The modified algorithm is then applied to simulate three reaction-diffusion systems with reactive boundaries.
基金National Natural Science Foundation of China (No.70471049)China Postdoctoral Science Foundation (No. 20060400704)
文摘In order to solve three kinds of fuzzy programm model, fuzzy chance-constrained programming mode ng models, i.e. fuzzy expected value and fuzzy dependent-chance programming model, a simultaneous perturbation stochastic approximation algorithm is proposed by integrating neural network with fuzzy simulation. At first, fuzzy simulation is used to generate a set of input-output data. Then a neural network is trained according to the set. Finally, the trained neural network is embedded in simultaneous perturbation stochastic approximation algorithm. Simultaneous perturbation stochastic approximation algorithm is used to search the optimal solution. Two numerical examples are presented to illustrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.61273035,71471135)
文摘To adapt to the complex and changeable market environment,the cell formation problems(CFPs) and the cell layout problems(CLPs) with fuzzy demands were optimized simultaneously. Firstly,CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,a chance constraint was introduced. A mathematical model was established with an objective function of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this problem could not be converted into its crisp equivalent,a hybrid simulated annealing(HSA) based on fuzzy simulation was put forward. Finally,simulation experiments were conducted under different confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective.
文摘The adaptive simulation algorithm (ASA) based on stiffness recognition is an effective and applicable simulation method. In this paper, a principle of the said method is briefly introduced and more importance is stressed in studying the value of its application by realizing it in MMS.
基金supported by the National Natural Science Foundation of China(72071064,72271074,72001004)the Anhui Provincial Natural Science Foundation(2408085QG221).
文摘Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at any moment within the VTW.However,different observation times demonstrate different cloud cover distributions,which exhibit different effects on the AEOS observation.Previous studies ignored pitch angles,discretized VTWs,or fixed cloud cover for every VTW,which led to the loss of intermediate observation states,thus these studies are not suitable for AEOS scheduling considering cloud cover distribution.In this study,a relationship formula between the cloud cover and observation time is proposed to calculate the cloud cover for every observation time,and a relationship formula between the observation time and pitch angle is designed to calculate the pitch angle for every observation time in the VTW.A refined model including the pitch angle,roll angle,and cloud cover distribution is established,which can make the scheme closer to the actual application of AEOSs.A hybrid genetic simulated annealing(HGSA)algorithm for AEOS scheduling is proposed,which integrates the advantages of genetic and simulated annealing algorithms and can effectively avoid falling into a local optimal solution.The experiments are conducted to compare the proposed algorithm with the traditional algorithms,the results verify that the proposed model and algorithm are efficient and effective for AEOS scheduling considering cloud cover distribution.
文摘We improve the genetic algorithm by combining it with a simulated annealing algorithm. The improved algorithm is used to extract model parameters of SOI MOSFETs, which are fabricated with standard 1.2μm CMOS/SOI technology developed by the Institute of Microelectronics of the Chinese Academy of Sciences. The simulation results using this model are in excellent agreement with experimental results. The precision is improved noticeably compared to commercial software. This method requires neither a deeper understanding of SOl MOSFETs model nor more complex computations than conventional algorithms used by commercial software. Comprehensive verification shows that this model is applicable to a very large range of device sizes.
基金The Start-Up Research Foundation of Nanjing Uni-versity of Information Science and Technology (No.QD60)
文摘A hybrid optimal algorithm, named the SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) is proposed. The proposed algorithm puts the random search strategy of the SAA into the PA, which can prevent optimizing courses from trapping in local optima. The SAA-PA can effectively solve multimodal optimization in the distributed multi-pump Raman amplifier (DMRA). Optimal results show that, under the conditions of the on-off gain of 10 dB, the gain bandwidth of larger than 80 nm and the fiber length of 80 km, the gain ripple of less than 1.25 dB can be designed from the DMRA with only four backward pumps after the optimization of the proposed SAA-PA. Compared with the pure SAA, the SAA-PA can attain a lower gain ripple with the same number of pumps. Also, the relationship between the optimal signal bandwidth and the number of pumps can be simulated numerically with the SAA-PA.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
基金the Natural Science Foundation of Shandong Province (Y2006A12)the Scientific ResearchDevelopment Project of Shandong Provincial Education Department(J06P01)the Doctoral Foundation of University of Jinan(B0633).
文摘In rough communication, because each agent has a different language and cannot provide precise communication to each other, the concept translated among multi-agents will loss some information and this results in a less or rougher concept. With different translation sequences, the problem of information loss is varied. To get the translation sequence, in which the jth agent taking part in rough communication gets maximum information, a simulated annealing algorithm is used. Analysis and simulation of this algorithm demonstrate its effectiveness.
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金the National Natural Science Foundation of China (60373089, 60674106, and 60533010)the National High Technology Research and Development "863" Program (2006AA01Z104)
文摘Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.