The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively red...The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.展开更多
The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived alde...The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived aldehydes plays a crucial role in biomass refining,and has become a frontier of mainstream research.This paper reviews the recent advances on the electrocatalytic oxidation of typical biomass-derived aldehydes(5-hydroxymethylfurfural,furfural,glucose,xylose,vanillin and benzaldehyde,etc.).The research presented in this review covers a wide range of oxidation mechanisms for each aldehyde.It is evident from the current literature that challenges related to the comprehensiveness of mechanistic studies,catalyst stability,and reaction scalability remain,but the rapid progress offers hope for future advancements.Finally,we elucidate the challenges in this domain and provide the perspectives on future developments.This review corroborates the significance of investigating the electrocatalytic oxidation of biomass-derived aldehydes and emphasizes the need for continued research to refine these processes for industrial applications.展开更多
A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochlor...A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochloride in the presence of non-toxic,non-corrosive and reusable zinc oxide(ZnO) as the catalyst under solvent-free microwave irradiation.The present approach offers the advantages of a clean reaction,simple methodology,employing readily available catalyst,short reaction duration(〈1 min),high selectivity;and high yield(90-98%).展开更多
A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with...A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.展开更多
An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency,...An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.展开更多
Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over...Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.展开更多
A versatile heteropoly acid(H_(3)PMo_(12)O_(40))-catalyzed coupling of diarylmethanols with epoxides was established for the synthesis of polyaryl-substituted aldehydes.Furthermore,the catalytic system was also suitab...A versatile heteropoly acid(H_(3)PMo_(12)O_(40))-catalyzed coupling of diarylmethanols with epoxides was established for the synthesis of polyaryl-substituted aldehydes.Furthermore,the catalytic system was also suitable for the reaction of diarylmethanols and diols/aldehydes.The application of such an earthabundant,readily accessible,and nontoxic catalyst provides a green approach for the construction of polyaryl-substituted aldehydes.展开更多
A mild, efficient and high yielding protocol for the synthesis of 2,2'-arylmethelene dicyclohexane- 1,3-dione derivatives at room temperature and 9-aryl-1,8-dihydrooctahydroxanthene at conventional heating using cesi...A mild, efficient and high yielding protocol for the synthesis of 2,2'-arylmethelene dicyclohexane- 1,3-dione derivatives at room temperature and 9-aryl-1,8-dihydrooctahydroxanthene at conventional heating using cesium fluoride as a catalyst is reported. The major advantages of this reaction are excellent yield, very short reaction time and use of inexpensive catalyst.展开更多
Aromatic aldehydes undergo crossed-aldol condensation with ketones in the presence of catalytic amount of sulfamic acid (SA) to afford the corresponding α,β-unsaturated aldol products under solvent-free conditions...Aromatic aldehydes undergo crossed-aldol condensation with ketones in the presence of catalytic amount of sulfamic acid (SA) to afford the corresponding α,β-unsaturated aldol products under solvent-free conditions in good to high yields at 45-80 ℃.展开更多
A series of novel Schiff bases bearing triazole structure were synthesized and characterized by LR and NMR. Mn(OAc)2/Schiff base efficiently catalyzed Henry reaction of nitroalkanes with aldehydes to produce the cor...A series of novel Schiff bases bearing triazole structure were synthesized and characterized by LR and NMR. Mn(OAc)2/Schiff base efficiently catalyzed Henry reaction of nitroalkanes with aldehydes to produce the corresponding products of ^-nitroalcohols, under mild conditions with high yields (up to 99%). A reaction mechanism is proposed based on the experimental results.展开更多
Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides sever...Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides several advantages such as environmentally friendly,short reaction times,high yields,non-hazardous and simple work-up procedure.展开更多
Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetrapbenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has ...Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetrapbenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has been proved to be an excellent catalyst for the system in the presence of molecular oxygen and isobutryaldehyde at room temperature.展开更多
Clean liquid oxidation of aldehydes can be accomplished using solid catalyst in the presence of molecular oxygen at room temperature, which is a valuable alternative to traditional counterparts.
The apparent solution dipole moment, μ, the association factor S, and the correlation parameter g for some aldehydes are calculated at different temperatures. The results are discussed and compared with previous resu...The apparent solution dipole moment, μ, the association factor S, and the correlation parameter g for some aldehydes are calculated at different temperatures. The results are discussed and compared with previous results. The dielectric constant ε' and loss ε' for the investigated aldehydes were measured with different frequencies at 10-50℃. The variation of permittivities with both temperature and frequency is discussed. The relaxation times τ, for some aldehydes were calculated at different temperatures and its values were used in the calculation of the thermodynamic parameters △H and △S展开更多
Recent investigations have shown the oxone-mediated oxidative methyl esterification of benzaldehyde derivatives using methanol. The reactions were accelerated in the presence of indium(III) triflate, a trivalent indiu...Recent investigations have shown the oxone-mediated oxidative methyl esterification of benzaldehyde derivatives using methanol. The reactions were accelerated in the presence of indium(III) triflate, a trivalent indium reagent, in many cases. Based on this method of methyl esterification of benzaldehyde derivatives, we further explored an application to heterocyclic aldehydes. The reactions were examined using methanol as well as other alcohols in order to establish a suitable range.展开更多
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsor...SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.展开更多
We have developed a versatile,mild protocol for trifluoromethylthiolation reactions of aldehydes with catalysis by a decatungstate hydrogen atom transfer photocatalyst under redox-neutral conditions.The protocol is hi...We have developed a versatile,mild protocol for trifluoromethylthiolation reactions of aldehydes with catalysis by a decatungstate hydrogen atom transfer photocatalyst under redox-neutral conditions.The protocol is highly selective,operationally simple,and compatible with a wide array of sensitive functional groups.It can be used for late-stage functionalization of bioactive molecules,which makes it convenient for drug discovery.展开更多
A simple and efficient method for the synthesis of pyrazoles through a silicotungstic acid (H_(4)SiW_(12)O_(40))-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides has been developed. Various epoxides...A simple and efficient method for the synthesis of pyrazoles through a silicotungstic acid (H_(4)SiW_(12)O_(40))-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides has been developed. Various epoxides/aldehydes were smoothly reacted with sulfonyl hydrazides to furnish regioselectivity 3,4-disubstituted 1H-pyrazoles. The application of such an earth-abundant, readily accessible, and nontoxic catalyst provides a green approach for the construction of 3,4-disubstituted 1H-pyrazoles. A plausible reaction mechanism has been proposed on the basis of control experiments, GC-MS and DFT calculations.展开更多
The aldol condensation reactions of acetylferrocene with several aromatic aldehydes have been studied in the solid state.The results showed that they revealed different reactivities in the solid slate from that in sol...The aldol condensation reactions of acetylferrocene with several aromatic aldehydes have been studied in the solid state.The results showed that they revealed different reactivities in the solid slate from that in solution and eight compounds have been prepared. Their structures have been characterized by UV,IR,1~HNMR,HS and elemental analysis.展开更多
文摘The selective hydrogenation ofα,β-unsaturated aldehydes/ketones enables precise control over product structures and properties by regulating hydrogen transport pathways and bond cleavage sequences to selectively reduce C=C or C=O bonds while preserving other functional groups within the molecule.This approach serves as a critical strategy for the directional synthesis of high-value molecules.However,achieving such selectivity remains challenging due to the thermodynamic equilibrium and kinetic competition between C=O and C=C bonds inα,β-unsaturated systems.Consequently,constructing precisely targeted catalytic systems is essential to overcome these limitations,offering both fundamental scientific significance and industrial application potential.Metal-organic frameworks(MOFs)and their derivatives have emerged as innovative platforms for designing such systems,owing to their programmable topology,tunable pore microenvironments,spatially controllable active sites,and modifiable electronic structures.This review systematically summarizes the research progress of MOF-based catalysts for selec-tive hydrogenation ofα,β-unsaturated aldehydes/ketones in the last decade,with emphasis on the design strategy,conformational relationship,and catalytic mechanism,aiming to provide new ideas for the design of targeted catalyt-ic systems for the selective hydrogenation ofα,β-unsaturated aldehydes/ketones.
基金supported by the National Key R&D Program of China(2023YFC3905804)the National Natural Science Foundation of China(22078374,22378434,41920104003)the Scientific and Technological Planning Project of Guangzhou(202206010145)。
文摘The escalating demand for sustainable and environmentally benign chemical processes has driven the exploration of biomass as an alternative to non-renewable resources.Electrocatalytic upgrading of biomass-derived aldehydes plays a crucial role in biomass refining,and has become a frontier of mainstream research.This paper reviews the recent advances on the electrocatalytic oxidation of typical biomass-derived aldehydes(5-hydroxymethylfurfural,furfural,glucose,xylose,vanillin and benzaldehyde,etc.).The research presented in this review covers a wide range of oxidation mechanisms for each aldehyde.It is evident from the current literature that challenges related to the comprehensiveness of mechanistic studies,catalyst stability,and reaction scalability remain,but the rapid progress offers hope for future advancements.Finally,we elucidate the challenges in this domain and provide the perspectives on future developments.This review corroborates the significance of investigating the electrocatalytic oxidation of biomass-derived aldehydes and emphasizes the need for continued research to refine these processes for industrial applications.
文摘A rapid and eco-friendly one-pot protocol for the synthesis of nitriles has been developed by treating various araldehydes bearing electron withdrawing as well as electron donating groups with hydroxylamine hydrochloride in the presence of non-toxic,non-corrosive and reusable zinc oxide(ZnO) as the catalyst under solvent-free microwave irradiation.The present approach offers the advantages of a clean reaction,simple methodology,employing readily available catalyst,short reaction duration(〈1 min),high selectivity;and high yield(90-98%).
基金the National Natural Science Foundation of China(No.20776053)the Program for New Century Excellent Talents in University(No.NCET-06-740)for providing financial support for this project.
文摘A facile, efficient and substrate-selective oxidation of aldehydes to carboxylic acids with NaClO catalyzed by β-cyclodextrin in water has been developed. A series of aldehydes which could form inclusion complex with β-cyclodextrin (β-CD) were oxidized selectively with excellent yields.
文摘An efficient and environmentally benign conversion of aldehydes into the corresponding gem-dicarboxylates was realized by using hydrated ferric sulfate as a heterogeneous catalyst. In addition to its high efficiency, the catalyst can be recovered simply and reused efficiently for at least seven times.
基金supported by the National Natural Science Foundation of China(22078374,21776324)the Scientific and Technological Planning Project of Guangzhou(202206010145)+2 种基金the National Ten Thousand Talent Plan,Key-Area Research and Development Program of Guangdong Province(2019B110209003)the Guangdong Basic and Applied Basic Research Foundation(2019B1515120058,2020A1515011149)the Start-up Fund for Senior Talents in Jiangsu University(21JDG060)。
文摘Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.
基金the financial support from the National Natural Science Foundation of China(Nos.21871026,21971224)Research Found of East China University of Technology(Nos.DHBK2019265,DHBK2019267,DHBK2019264)。
文摘A versatile heteropoly acid(H_(3)PMo_(12)O_(40))-catalyzed coupling of diarylmethanols with epoxides was established for the synthesis of polyaryl-substituted aldehydes.Furthermore,the catalytic system was also suitable for the reaction of diarylmethanols and diols/aldehydes.The application of such an earthabundant,readily accessible,and nontoxic catalyst provides a green approach for the construction of polyaryl-substituted aldehydes.
文摘A mild, efficient and high yielding protocol for the synthesis of 2,2'-arylmethelene dicyclohexane- 1,3-dione derivatives at room temperature and 9-aryl-1,8-dihydrooctahydroxanthene at conventional heating using cesium fluoride as a catalyst is reported. The major advantages of this reaction are excellent yield, very short reaction time and use of inexpensive catalyst.
文摘Aromatic aldehydes undergo crossed-aldol condensation with ketones in the presence of catalytic amount of sulfamic acid (SA) to afford the corresponding α,β-unsaturated aldol products under solvent-free conditions in good to high yields at 45-80 ℃.
基金support from the National Natural Science Foundation of China(Nos.20962018, 20862015 and 20562011)
文摘A series of novel Schiff bases bearing triazole structure were synthesized and characterized by LR and NMR. Mn(OAc)2/Schiff base efficiently catalyzed Henry reaction of nitroalkanes with aldehydes to produce the corresponding products of ^-nitroalcohols, under mild conditions with high yields (up to 99%). A reaction mechanism is proposed based on the experimental results.
文摘Green,mild and efficient iodination of hydroxylated aromatic aldehydes and ketones using iodine and iodic acid in the solidstate by grinding under solvent-free conditions at room temperature.This method provides several advantages such as environmentally friendly,short reaction times,high yields,non-hazardous and simple work-up procedure.
基金The authors thank the National Natural Science Foundation of China (No. 20576045)the Program for New Century Excellent Talents in University (NCET) for the financial support.
文摘Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetrapbenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has been proved to be an excellent catalyst for the system in the presence of molecular oxygen and isobutryaldehyde at room temperature.
文摘Clean liquid oxidation of aldehydes can be accomplished using solid catalyst in the presence of molecular oxygen at room temperature, which is a valuable alternative to traditional counterparts.
文摘The apparent solution dipole moment, μ, the association factor S, and the correlation parameter g for some aldehydes are calculated at different temperatures. The results are discussed and compared with previous results. The dielectric constant ε' and loss ε' for the investigated aldehydes were measured with different frequencies at 10-50℃. The variation of permittivities with both temperature and frequency is discussed. The relaxation times τ, for some aldehydes were calculated at different temperatures and its values were used in the calculation of the thermodynamic parameters △H and △S
文摘Recent investigations have shown the oxone-mediated oxidative methyl esterification of benzaldehyde derivatives using methanol. The reactions were accelerated in the presence of indium(III) triflate, a trivalent indium reagent, in many cases. Based on this method of methyl esterification of benzaldehyde derivatives, we further explored an application to heterocyclic aldehydes. The reactions were examined using methanol as well as other alcohols in order to establish a suitable range.
基金supported by NSFC(21376261,21173270,21177160)Beijing Natural Science Foundation(2142027)+1 种基金863 Program of China(2013AA065302)the Doctor Select Foundation(20130007110007)
文摘SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.
基金the National Natural Science Foundation of China (Nos.21732002, 22077071) for generous financial support for our programs。
文摘We have developed a versatile,mild protocol for trifluoromethylthiolation reactions of aldehydes with catalysis by a decatungstate hydrogen atom transfer photocatalyst under redox-neutral conditions.The protocol is highly selective,operationally simple,and compatible with a wide array of sensitive functional groups.It can be used for late-stage functionalization of bioactive molecules,which makes it convenient for drug discovery.
基金financially supported by the National Natural Science Foundation of China (Nos. 22001034 and 21804019)the Open Fund of the Jiangxi Province Key Laboratory of Synthetic Chemistry (No. JXSC202008)the Research Found of East China University of Technology (Nos. DHBK2019264, DHBK2019265 and DHBK2019267)。
文摘A simple and efficient method for the synthesis of pyrazoles through a silicotungstic acid (H_(4)SiW_(12)O_(40))-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides has been developed. Various epoxides/aldehydes were smoothly reacted with sulfonyl hydrazides to furnish regioselectivity 3,4-disubstituted 1H-pyrazoles. The application of such an earth-abundant, readily accessible, and nontoxic catalyst provides a green approach for the construction of 3,4-disubstituted 1H-pyrazoles. A plausible reaction mechanism has been proposed on the basis of control experiments, GC-MS and DFT calculations.
文摘The aldol condensation reactions of acetylferrocene with several aromatic aldehydes have been studied in the solid state.The results showed that they revealed different reactivities in the solid slate from that in solution and eight compounds have been prepared. Their structures have been characterized by UV,IR,1~HNMR,HS and elemental analysis.