A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensil...A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li) phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ″/θ′(Al2Cu) phase for 2A97 alloy treated by a triple-aging of a retrogression and re-aging treatment in the following order: (1) at 165℃×30 min, (2) at 220 ℃ or 240℃ × 15 min, (3) at 165℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165℃ in T6 temper.展开更多
Based on a novel high strength Al-Cu-Li-X alloy-2A97, the effect of T6I6 and its modified processes on the properties investigated by SEM and tensile test. The results show that when the alloy is heat treated by tripl...Based on a novel high strength Al-Cu-Li-X alloy-2A97, the effect of T6I6 and its modified processes on the properties investigated by SEM and tensile test. The results show that when the alloy is heat treated by triple ageing, with secondary low temperature ageing at 80 'C after initial ageing at 155 and 150℃, and final re-ageing at 135 and 165℃, the tensile properties are close to the peak level of aged alloy in T6 temper. The addition of plastic deformation after and prior to secondary ageing favor the T1(Al2CuLi) andδ'(Al3Li) precipitation during final re-ageing at 135 and 165℃corresponding to triple ageing, so the Al-Li alloy displays higher strength for the modified processes of T6I6. The microstructures consist ofδ', T1 andθ''/θ' (Al2Cu) phase for single and triple aged alloy, the number density and volume fraction ofδ' phase increase for T6I6 and its modified processes correspond to single ageing.展开更多
Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by a...Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.展开更多
基金"973" Key Project of Chinese National Programs for Fundamental Research and Development (2005CB623705)
文摘A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li) phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ″/θ′(Al2Cu) phase for 2A97 alloy treated by a triple-aging of a retrogression and re-aging treatment in the following order: (1) at 165℃×30 min, (2) at 220 ℃ or 240℃ × 15 min, (3) at 165℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165℃ in T6 temper.
基金Projects(2005CB623705) supported by Major State Basic Research and Development Program of China
文摘Based on a novel high strength Al-Cu-Li-X alloy-2A97, the effect of T6I6 and its modified processes on the properties investigated by SEM and tensile test. The results show that when the alloy is heat treated by triple ageing, with secondary low temperature ageing at 80 'C after initial ageing at 155 and 150℃, and final re-ageing at 135 and 165℃, the tensile properties are close to the peak level of aged alloy in T6 temper. The addition of plastic deformation after and prior to secondary ageing favor the T1(Al2CuLi) andδ'(Al3Li) precipitation during final re-ageing at 135 and 165℃corresponding to triple ageing, so the Al-Li alloy displays higher strength for the modified processes of T6I6. The microstructures consist ofδ', T1 andθ''/θ' (Al2Cu) phase for single and triple aged alloy, the number density and volume fraction ofδ' phase increase for T6I6 and its modified processes correspond to single ageing.
文摘Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.