Based on the purpose of solving the"secondary absorption"of adjacent nanowires and the lateral emission in the Ga N nanowire arrays(NWAs)cathode,an exponential-doping and graded Al compositional Ga N NWAs ph...Based on the purpose of solving the"secondary absorption"of adjacent nanowires and the lateral emission in the Ga N nanowire arrays(NWAs)cathode,an exponential-doping and graded Al compositional Ga N NWAs photocathode is proposed,which could generate internal electric field to increase the quantum efficiency(QE)of top surface,and the introduction of an external electric field promote the side-emission electrons to shift toward the collecting side.The QE and collection efficiency(CE)of exponential-doping and graded compositional Ga N NWAs under different array structure parameters,incident angles and external electric field intensities are analyzed.The results show that although the collection ratio of emitted electrons in the exponential-doping Ga N NWAs is higher,the graded Al compositional photocathode with a stronger built-in electric field can obtain better CE under the application of an external electric field,and the peak value can reach 33.2%in a specific structure.External electric field has a more significant effect on the CE of uniform-doping Ga N NWAs.The solutions provided in this study can make the Ga N NWAs photocathode more suitable for the strict requirements of vacuum electron sources.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the exist...Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.展开更多
Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an...Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.展开更多
Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed...Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientatio...Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientation,grain boundary characteristics,and phase distribution were analyzed through optical microscope,scanning electron microscope,and electron backscattered diffractometer.Mechanical properties were assessed using tensile shear tests,90°bending tests,and hardness measurements.Vickers hardness and nanoindentation test results further provided information on the hardness distributions.Results indicate that the diffusion layer in rolled Cu/Al composites is relatively fragile,while that produced by underwater explosive welding features a diffusion layer of approximately 18μm in thickness,which is metallurgically bonded through atomic diffusion.The tensile shear strength of these composites ranges from 64.45 MPa to 70.84 MPa,and in the 90°three-point bending test,the underwater-explosive-welded samples exhibit superior flexural performance.This study elucidates the effects of different manufacturing methods on the interfacial properties and mechanical performance of Cu/Al composites,offering essential insights for the selection of manufacturing methods and applications.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the...AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.展开更多
The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3....The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties.展开更多
In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The...In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.展开更多
High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal condu...High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal conductivity,wear resistance,and low thermal expansion coefficient.However,the abrasive and adhesive wear caused by the hard silicon reinforcement and the ductile aluminium matrix leads to significant tool wear,decreased machining efficiency,and compromised surface quality.This study combines theoretical analysis and cutting experiments to investigate polycrystalline diamond(PCD)tool wear during milling of 70 vol%Si/Al composite.A key contribution of this work is the development of a tool wear model that incorporates reinforcement particle characteristics,treating them as ellipsoidal structures,which enhances the accuracy of predicting abrasive and adhesive wear mechanisms.The model is based on abrasive and adhesive wear mechanisms,and can analyze the interaction between silicon particles,aluminium matrix,and tool components,thus providing deeper insights into PCD tool wear processes.Experimental validation of the model shows a good agreement with the results,with a mean deviation of approximately 10%.The findings on the tool wear mechanism reveal that,as tool wear progresses,the proportion of abrasive wear increases from 40%in the running-in stage to 75%in the rapid wear stage,while adhesive wear decreases.The optimal machining parameters of 120 m·min^(–1) cutting speed(v_(c))and 0.04 mm·z^(–1) feed rate(f_(z)),result in tool life of 33 min and surface roughness(S_(a))of 2.2μm.The study uncovers the variation patterns of abrasive and adhesive wear during the tool wear process,and the proposed model offers a robust framework for predicting tool wear during the machining of high-volume fraction Si/Al composites.The research findings also offer key insights for optimizing tool selection and machining parameters,advancing both the theoretical understanding and practical application of PCD tool wear.展开更多
Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre...Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.展开更多
SiC-reinforced aluminum matrix(SiCp/Al)composite is widely utilized in the aerospace,automotive,and electronics industries due to the combination of ceramic hardness and metal toughness.However,the significant dispari...SiC-reinforced aluminum matrix(SiCp/Al)composite is widely utilized in the aerospace,automotive,and electronics industries due to the combination of ceramic hardness and metal toughness.However,the significant disparity in properties between SiC particles and the aluminum matrix results in severe tool wear and diminished surface quality during conventional machining.This study proposes an environmentally friendly and clean dry electrical discharge assisted grinding process as an efficient and low-damage machining method for SiCp/Al.An experimental platform was set up to study the impact of grinding and discharge process parameters on surface quality.The study compared the chip formation mechanism and surface quality between dry electrical discharge assisted grinding and conventional grinding,revealing relationships between surface roughness,grinding force,grinding temperature,and related parameters.The results indicate that the proposed grinding method leads to smaller chip sizes,lower grinding forces and temperatures,and an average reduction of 19.2%in surface roughness compared to conventional grinding.The axial,tangential,and normal grinding forces were reduced by roughly 10.5%,37.8%,and 23.0%,respectively.The optimized process parameters were determined to be N=2500 r/min,vf=30 mm/min,a=10μm,E=15 V,f=5000 Hz,dc=80%,resulting in a surface roughness of 0.161μm.展开更多
Non-isothermal aging(NIA)treatments have presented significant advantages in improving the comprehensive performance and aging hardening efficiency of the 7000 series aluminum alloys,but there is no attention paid to ...Non-isothermal aging(NIA)treatments have presented significant advantages in improving the comprehensive performance and aging hardening efficiency of the 7000 series aluminum alloys,but there is no attention paid to their composites.This study takes a linear heating aging process as an example to reveal the precipitation behaviors of a 15 vol.%SiC/7085Al composite as well as its impact on mechanical properties using differential scanning calorimetry,transmission electron microscopy,small-angle neutron scattering,hardness measurements,and tensile testing.The results indicated the formation of GP(Ⅰ,Ⅱ)zones,η’andηprecipitates in sequence,leading to the hardness and strength initially increasing and then decreasing with rising NIA temperatures.The maximums were reached at 183℃,corresponding to the appearance ofη’precipitates in large quantities.Owing to the rapid temperature rise during the NIA process,the precipitates entered the coarsening and redissolution stage before they were entirely formed,resulting in reduced peak strength compared to the T6 treatment.The composite exhibited a more significant reduction in strength than the 7085Al alloy because:(i)the annihilation of vacancies suppressed the formation of GPII zones,thereby weakening their transition toη’precipitates;(ii)quenching dislocations promoted the coarsening of precipitates.An improved NIA process,incorporating both heating and cooling aging treatments,was effectively designed with the assistance of in-situ SANS technology to address this issue,which allows for achieving strength comparable to that after the T6 treatment with only 15%of the aging time consumption.This research fills the gap in investigating the NIA precipitation behaviors of aluminum matrix composites,providing guidance for the formulation of NIA schedules.展开更多
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda...1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].展开更多
Improving the thermal conductivity(TC)of diamond–metal composites has always been a significant challenge in the field of thermal management.In this paper,diamond/Al composites are systematically studied,and the infl...Improving the thermal conductivity(TC)of diamond–metal composites has always been a significant challenge in the field of thermal management.In this paper,diamond/Al composites are systematically studied,and the influence of the holding time(10–120 min)on interface structure and TC is discussed.The results of this research show that longterm thermal diffusion sintering can achieve dense interfacial bonding in diamond/Al composites,enhancing their TC.Diamond/Al composites with 50 vol%of 900μm diamond attain the highest TC value of 888.73 W·m^(-1)·K^(-1)under sintering conditions of 650?C,50 MPa,and 120 min—nearly 92%of the theoretical value predicted by the Maxwell model.This study establishes that high TC can be achieved through long-term thermal diffusion alone,without the need for complex diamond surface coating or substrate alloying.展开更多
An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particle...An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particles,including nano-sizedθ’and T(Al_(20)Cu_(2)Mn_(3))particles after T6 heat treatment,as well as in-situ synthesized nano-sizedγ-Al_(2)O_(3)particles.Tensile tests of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite and the Al-4Cu-0.5Mn base alloy after T6 treatment were carried out at room temperature and elevated temperatures(200°C,300°C,and 400°C).Compared with the base alloy,the yield strength of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite after T6 treatment increases significantly from 187 MPa to 263 MPa at room temperature.Simultaneously,at elevated temperatures,the yield strength is also enhanced,with a yield strength of 52 MPa at 400°C for this composite.The in-situ fabricatedγ-Al_(2)O_(3)particles,mainly distributed along the grain boundaries,are supposed to play the main strengthening role,especially at high temperatures.This work acts as a reference for designing composites for high-temperature applications.展开更多
The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate wa...The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.展开更多
基金supported by Qing Lan Project of Jiangsu Province-China(Grant No.2017-AD41779)the Fundamental Research Funds for the Central Universities-China(Grant No.30916011206)the Six Talent Peaks Project in Jiangsu ProvinceChina(Grant No.2015-XCL-008)。
文摘Based on the purpose of solving the"secondary absorption"of adjacent nanowires and the lateral emission in the Ga N nanowire arrays(NWAs)cathode,an exponential-doping and graded Al compositional Ga N NWAs photocathode is proposed,which could generate internal electric field to increase the quantum efficiency(QE)of top surface,and the introduction of an external electric field promote the side-emission electrons to shift toward the collecting side.The QE and collection efficiency(CE)of exponential-doping and graded compositional Ga N NWAs under different array structure parameters,incident angles and external electric field intensities are analyzed.The results show that although the collection ratio of emitted electrons in the exponential-doping Ga N NWAs is higher,the graded Al compositional photocathode with a stronger built-in electric field can obtain better CE under the application of an external electric field,and the peak value can reach 33.2%in a specific structure.External electric field has a more significant effect on the CE of uniform-doping Ga N NWAs.The solutions provided in this study can make the Ga N NWAs photocathode more suitable for the strict requirements of vacuum electron sources.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
文摘Aluminum(Al)powder is widely used in solid propellants.In particular,nano-Al has attracted extensive scholarly attention in the field of energetic materials due to its higher reactivity than micro-Al.However,the existence of aluminum oxide film on its surface reduces the heat release performance of the aluminum powder,which greatly limits its application.Hence,this paper used iron,a component of solid propellant,to coat micron-Al and nano-Al to improve the heat release efficiency and reactivity of Al powder.SEM,TEM,EDS,XRD,XPS,and BET were used to investigate the morphological structure and properties of pure Al and Fe/Al composite fuels of different sizes.The results show that Fe was uniformly coated on the surface of Al powder.There was no reaction between Fe and Al,and Fe/Al composite fuels had a larger specific surface area than pure Al,which could better improve the reactivity of pure Al.Besides,the catalytic effects of pure Al and Fe/Al composite fuels of different sizes on ammonium perchlorate and ammonium nitrate were explored.The results show that the catalysis of pure Al powder could be greatly improved by coating Fe on the surface of Al powder.Especially,the micron-Fe/Al composite fuel had a higher catalytic effect than the pure nano-Al powder.Hence,Fe/Al composite fuels are expected to be widely used in solid propellants.
基金supported by the National Natural Science Foundation of China (Nos. 21547004, 51638001)the Beijing Natural Science Foundation (No. 8152011)the Scientific Research Program of Beijing Municipal Education Commission (No. KM201510005009)
文摘Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.
基金the National Natural Science Foundation of China under grant No.50175004
文摘Mixed Al-Si and Al-Cu powders were investigated as insert layers to reactive diffusion bond SiCp/6063 metal matrix composite (MMC). The results show that SiCp/6063 MMC joints bonded by the insert layers of the mixed Al-Si and Al-Cu powders have a dense joining layer of high quality. The mass transfer between the bonded materials and insert layers during bonding leads to the hypoeutectic microstructure of the joining layers bonded by both the mixed Al-Si and Al-Cu powders with eutectic composition. At fixed bonding time (temperature), the shear strength of the joints by both insert layers of the mixed Al-Si and Al-Cu powders increases with increasing the bonding temperature (time), but get maxima at bonding temperature 600℃ (time 90 min).
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
基金Anhui Province Key Research and Development Plan(2022a05020021)China Coal Science and Industry Group Chongqing Research Institute Independent Research and Development Project(2023YBXM58)。
文摘Cu/Al composite plates were fabricated using rolling and underwater explosive welding techniques,separately,to compare their interfacial microstructures and mechanical performance.Interface morphology,grain orientation,grain boundary characteristics,and phase distribution were analyzed through optical microscope,scanning electron microscope,and electron backscattered diffractometer.Mechanical properties were assessed using tensile shear tests,90°bending tests,and hardness measurements.Vickers hardness and nanoindentation test results further provided information on the hardness distributions.Results indicate that the diffusion layer in rolled Cu/Al composites is relatively fragile,while that produced by underwater explosive welding features a diffusion layer of approximately 18μm in thickness,which is metallurgically bonded through atomic diffusion.The tensile shear strength of these composites ranges from 64.45 MPa to 70.84 MPa,and in the 90°three-point bending test,the underwater-explosive-welded samples exhibit superior flexural performance.This study elucidates the effects of different manufacturing methods on the interfacial properties and mechanical performance of Cu/Al composites,offering essential insights for the selection of manufacturing methods and applications.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金National Natural Science Foundation of China(52275308,52301146)Fundamental Research Funds for the Central Universities(2023JG007)Supported by Shi Changxu Innovation Center for Advanced Materials(SCXKFJJ202207)。
文摘AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)Key Project of Chongqing Technology Innovation and Application Development Special Project(CSTB2023TIADKPX0016,CSTB2022TIAD-KPX0027)+1 种基金National Natural Science Foundation of China(51971183)the Science and Technology Program of Xinjiang Production and Construction Corps(2024AB056).
文摘The paper study the interfacial mechanical properties and structural evolution mechanisms in 6061/AZ31B/6061 composite plates with and without Ni foil interlayers.For Ni-free interfaces,a continuous diffusion layer(3.5-4.0μm)forms,dominated by brittle columnar Al_(12)Mg_(17) intermetallic compounds(IMCs,0.27-0.35μm thick),which act as preferential crack initiation sites.In contrast,Ni foil implantation induces interfacial restructuring during hot rolling:Constrained deformation fragments the Ni foil into grid-like segments with"olive"-shaped crosssections,embedded into Mg/Al matrices.These fragments(56% areal coverage)coexist with dispersed multiphase IMCs(Mg_(2)Ni,Al_(3)Ni,Mg_(3)AlNi,Al_(12)Mg_(17);10-20 nm grains)at fragment edges,forming a hybrid interface of"willow-leaf"Al_(12)Mg_(17) islands and nanoscale Mg_(2)Ni/Al_(3)Ni layers(15-25 nm).Hall-Petch analysis reveals the multiphase IMC interface exhibits 3.6×higher"kd^(-1/2)"strengthening contribution than single-phase Al_(12)Mg_(17) systems,attributed to grain refinement(20 nm vs.260 nm average grain size).Synergistic effects of mechanical interlocking,adhesion hierarchy(Ni-Al>Ni-Mg>Al-Mg),and nanoscale reinforcement collectively enhance peel strength by 78%without compromising bulk tensile properties.
基金supported by the National Key Research and Development Program of China(2022YFB3708400)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)+4 种基金the Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology(SKXRC202301)the Guangdong Academy of Science Fund(2020GDASYL-20200101001,2023GDASQNRC-0210,2023GDASQNRC-0321)the Guangdong Science and Technology plan project(2023A0505030002)the GINM’Special Project of Science and Technology Development(2023GINMZX-202301020108)Evaluation Project of Guangdong Provincial Key Laboratory(2023B1212060043).
文摘In this study,microstructure and mechanical behavior of Mg/Al composite plates with Ti foil interlayer were systematically studied,with a great emphasis on the effect of different thicknesses of Ti foil interlayer.The results show that compared to 100μm thick Ti foil,10μm thick Ti foil is more prone to fracture and is evenly distributed in fragments at the interface.The introduction of Ti foil can effectively refine the grain size of Mg layers of as-rolled Mg/Al composite plates,10μm thick Ti foil has a better refining effect than 100μm thick Ti foil.Ti foil can effectively increase the yield strength(YS)and ultimate strength(UTS)of as-rolled Mg/Al composite plates,10μm thick Ti foil significantly improves the elongation(El)of Mg/Al composite plate,while 100μm thick Ti foil slightly weakens the El.After annealing at 420℃ for 0.5 h and 4 h,Ti foil can inhibit the formation of intermetallic compounds(IMCs)at the interface of Mg/Al composite plates,which effectively improves the YS,UTS and El of Mg/Al composite plates.In addition,Ti foil can also significantly enhance the interfacial shear strength(SS)of Mg/Al composite plates before and after annealing.
基金supported by the National Natural Science Foundation of China(Grant No.52075255)the Jiangsu Provincial Science and Technology Plan(Grant No.BZ2023005).
文摘High-volume fraction silicon particle-reinforced aluminium matrix composites(Si/Al)are increasingly applied in aerospace,radar communications,and large-scale integrated circuits because of their superior thermal conductivity,wear resistance,and low thermal expansion coefficient.However,the abrasive and adhesive wear caused by the hard silicon reinforcement and the ductile aluminium matrix leads to significant tool wear,decreased machining efficiency,and compromised surface quality.This study combines theoretical analysis and cutting experiments to investigate polycrystalline diamond(PCD)tool wear during milling of 70 vol%Si/Al composite.A key contribution of this work is the development of a tool wear model that incorporates reinforcement particle characteristics,treating them as ellipsoidal structures,which enhances the accuracy of predicting abrasive and adhesive wear mechanisms.The model is based on abrasive and adhesive wear mechanisms,and can analyze the interaction between silicon particles,aluminium matrix,and tool components,thus providing deeper insights into PCD tool wear processes.Experimental validation of the model shows a good agreement with the results,with a mean deviation of approximately 10%.The findings on the tool wear mechanism reveal that,as tool wear progresses,the proportion of abrasive wear increases from 40%in the running-in stage to 75%in the rapid wear stage,while adhesive wear decreases.The optimal machining parameters of 120 m·min^(–1) cutting speed(v_(c))and 0.04 mm·z^(–1) feed rate(f_(z)),result in tool life of 33 min and surface roughness(S_(a))of 2.2μm.The study uncovers the variation patterns of abrasive and adhesive wear during the tool wear process,and the proposed model offers a robust framework for predicting tool wear during the machining of high-volume fraction Si/Al composites.The research findings also offer key insights for optimizing tool selection and machining parameters,advancing both the theoretical understanding and practical application of PCD tool wear.
基金supported by National Key Research and Development Program(2018YFA0707300)Major Program of National Natural Science Foundation of China(U22A20188).
文摘Edge defects significantly impact the forming quality of Mg/Al composite plates during the rolling process.This study aims to develop an effective rolling technique to suppress these defects.First,an enhanced Lemaitre damage model with a generalized stress state damage prediction mechanism was used to evaluate the key mechanical factors contributing to defect formation.Based on this evaluation,an embedded composite rolling technique was proposed.Subsequently,comparative validation was conducted at 350℃ with a 50% reduction ratio.Results showed that the plates rolled using the embedded composite rolling technique had smooth surfaces and edges,with no macroscopic cracks observed.Numerical simulation indicated that,compared to conventional processes,the proposed technique reduced the maximum edge stress triaxiality of the plates from-0.02 to-1.56,significantly enhancing the triaxial compressive stress effect at the edges,which suppressed void nucleation and growth,leading to a 96%reduction in damage values.Mechanical property evaluations demonstrated that,compared to the conventional rolling process,the proposed technique improved edge bonding strength and tensile strength by approximately 67.7%and 118%,respectively.Further microstructural characterization revealed that the proposed technique,influenced by the restriction of deformation along the transverse direction(TD),weakened the plastic flow in the TD and enhanced plastic flow along the rolling direction(RD),resulting in higher grain boundary density and stronger basal texture.This,in turn,improved the toughness and transverse homogeneity of the plates.In summary,the embedded composite rolling technique provides crucial technical guidance for the preparation of Mg-based composite plates.
基金Supported by National Natural Science Foundation of China(Grant Nos.52475480,51805334)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515030249,2023A1515110059)Shenzhen Science and Technology Program(Grant No.GJHZ20220913144212023).
文摘SiC-reinforced aluminum matrix(SiCp/Al)composite is widely utilized in the aerospace,automotive,and electronics industries due to the combination of ceramic hardness and metal toughness.However,the significant disparity in properties between SiC particles and the aluminum matrix results in severe tool wear and diminished surface quality during conventional machining.This study proposes an environmentally friendly and clean dry electrical discharge assisted grinding process as an efficient and low-damage machining method for SiCp/Al.An experimental platform was set up to study the impact of grinding and discharge process parameters on surface quality.The study compared the chip formation mechanism and surface quality between dry electrical discharge assisted grinding and conventional grinding,revealing relationships between surface roughness,grinding force,grinding temperature,and related parameters.The results indicate that the proposed grinding method leads to smaller chip sizes,lower grinding forces and temperatures,and an average reduction of 19.2%in surface roughness compared to conventional grinding.The axial,tangential,and normal grinding forces were reduced by roughly 10.5%,37.8%,and 23.0%,respectively.The optimized process parameters were determined to be N=2500 r/min,vf=30 mm/min,a=10μm,E=15 V,f=5000 Hz,dc=80%,resulting in a surface roughness of 0.161μm.
基金support of the Na-tional Key R&D Program of China(No.2021YFA1600700)the Na-tional Natural Science Foundation of China(grant Nos.U22A20114,52322106,52192595,and 52301200)+2 种基金the Project funded by China Postdoctoral Science Foundation(No.2023M733573)CSNS Con-sortium on High-performance Materials of Chinese Academy of Sciences(No.JZHKYPT-2021-01)the Natural Science Foun-dation of Liaoning Province(No.2023-BS-020)。
文摘Non-isothermal aging(NIA)treatments have presented significant advantages in improving the comprehensive performance and aging hardening efficiency of the 7000 series aluminum alloys,but there is no attention paid to their composites.This study takes a linear heating aging process as an example to reveal the precipitation behaviors of a 15 vol.%SiC/7085Al composite as well as its impact on mechanical properties using differential scanning calorimetry,transmission electron microscopy,small-angle neutron scattering,hardness measurements,and tensile testing.The results indicated the formation of GP(Ⅰ,Ⅱ)zones,η’andηprecipitates in sequence,leading to the hardness and strength initially increasing and then decreasing with rising NIA temperatures.The maximums were reached at 183℃,corresponding to the appearance ofη’precipitates in large quantities.Owing to the rapid temperature rise during the NIA process,the precipitates entered the coarsening and redissolution stage before they were entirely formed,resulting in reduced peak strength compared to the T6 treatment.The composite exhibited a more significant reduction in strength than the 7085Al alloy because:(i)the annihilation of vacancies suppressed the formation of GPII zones,thereby weakening their transition toη’precipitates;(ii)quenching dislocations promoted the coarsening of precipitates.An improved NIA process,incorporating both heating and cooling aging treatments,was effectively designed with the assistance of in-situ SANS technology to address this issue,which allows for achieving strength comparable to that after the T6 treatment with only 15%of the aging time consumption.This research fills the gap in investigating the NIA precipitation behaviors of aluminum matrix composites,providing guidance for the formulation of NIA schedules.
基金support by the National Natural Science Foundation of China(Grant Nos.U23A20546 and 52271010)the Chinese National Natural Science Fund for Distinguished Young Scholars(Grant No.52025015)the Natural Science Foundation of Tianjin City(No.21JCZDJC00510).
文摘1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274372 and 12274373)the Major Science and Technology Projects of Henan Province(Grant No.231100230300)。
文摘Improving the thermal conductivity(TC)of diamond–metal composites has always been a significant challenge in the field of thermal management.In this paper,diamond/Al composites are systematically studied,and the influence of the holding time(10–120 min)on interface structure and TC is discussed.The results of this research show that longterm thermal diffusion sintering can achieve dense interfacial bonding in diamond/Al composites,enhancing their TC.Diamond/Al composites with 50 vol%of 900μm diamond attain the highest TC value of 888.73 W·m^(-1)·K^(-1)under sintering conditions of 650?C,50 MPa,and 120 min—nearly 92%of the theoretical value predicted by the Maxwell model.This study establishes that high TC can be achieved through long-term thermal diffusion alone,without the need for complex diamond surface coating or substrate alloying.
基金supported by the National Natural Science Foundation of China(No.52471040)the Natural Science Foundation of Shandong Province(No.ZR2022ME005).
文摘An Al_(2)O_(3)/Al-Cu-Mn composite was fabricated using a combination of ball milling and liquid-solid reaction,with a nominal composition of Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3).The composite contains reinforcement particles,including nano-sizedθ’and T(Al_(20)Cu_(2)Mn_(3))particles after T6 heat treatment,as well as in-situ synthesized nano-sizedγ-Al_(2)O_(3)particles.Tensile tests of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite and the Al-4Cu-0.5Mn base alloy after T6 treatment were carried out at room temperature and elevated temperatures(200°C,300°C,and 400°C).Compared with the base alloy,the yield strength of the Al-4Cu-0.5Mn-2.8γ-Al_(2)O_(3)composite after T6 treatment increases significantly from 187 MPa to 263 MPa at room temperature.Simultaneously,at elevated temperatures,the yield strength is also enhanced,with a yield strength of 52 MPa at 400°C for this composite.The in-situ fabricatedγ-Al_(2)O_(3)particles,mainly distributed along the grain boundaries,are supposed to play the main strengthening role,especially at high temperatures.This work acts as a reference for designing composites for high-temperature applications.
基金Supported by Science Research Project of Hebei Education Department(Grant No.BJK2024138)Hebei Provincial Natural Science Foundation(Grant No.E2023203129)National Natural Science Foundation of China(Grant Nos.52004242,52075472).
文摘The aluminum(Al)/steel transition joints used in ships are processed from composite plates,and their mechanical properties have a significant impact on the safety of ships.In this paper,the Al/steel composite plate was prepared using rolling,with 5083 aluminum plate as the cladding plate,Q235 steel plate as the substrate,and TA1 titanium(Ti)plate and DT4 pure iron(Fe)plate as the intermediate layers.The heterothermic billet was prepared through induction heating by the magnetic effects of the steel plate and the pure Fe plate,and then the Al/steel composite plate was obtained by rolling.The impacts of post-rolling cooling process on the microstructure and properties of the Al/Ti/pure Fe/steel composite plate were studied.The results manifested that the pure Fe/steel interface had a good composite effect.With the increase in the cooling rate,the bonding strength of the Al/Ti interface was raised,and that of the Ti/Fe interface was increased first and then decreased.When the oil cooling process was adopted,the Al/Ti/pure Fe/steel composite plate exhibited the highest comprehensive performance.The shear strength of the Al/Ti interface and the Ti/Fe interface was 102 MPa and 186 MPa,respectively.The plastic fracture was determined as the mode of interface fracture.