β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy ...β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.展开更多
Ti3AlC2/TiC-Al2O3 composite was synthesized by a combustion reaction in TiO2-Al-C system. The effect of the compositions in raw materials on the products was investigated. Ti3AlC2/TiC-Al2O3 composite was obtained at t...Ti3AlC2/TiC-Al2O3 composite was synthesized by a combustion reaction in TiO2-Al-C system. The effect of the compositions in raw materials on the products was investigated. Ti3AlC2/TiC-Al2O3 composite was obtained at the molar ratio of TiO2:Al:C=3.0:5.0~5.1:1.8~2.0. The reaction path for the 3TiO2-5Al- 2C system was proposed. Al3Ti, Ti203, TiO, and 6-Al2O3 are found to be transitional phases. Finally, Ti3AlC2/TiC-Al2O3 composite forms at~900℃ of furnace temperature. The measured Vickers hardness, fracture toughness, and flexural strength of the nearly dense sample from 3TiO2-5Al-2C are 13.3±1.1 GPa, 5.8±0.3 MPa.m^1/2, and 466±39 MPa, respectively.展开更多
基金supported by the Natural Science Foundation of Henan Province(No.232300420329)Key Scientific Research Project of Colleges and Universities in Henan Province(Nos.23B430012,22A430028,and 25B430022)+2 种基金Henan Provincial Science and Technology Research Project(No.242102231064)National Natural Science Foundation of China(No.52202064)Luoyang Major Science and Technology Innovation Project(No.2301009A).
文摘β-Sialon has emerged as a promising material for enhancing the service life of Al_(2)O_(3)-C refractories due to its excellent physicochemical properties.The impact of varying concentrations of nanometer Al/Si alloy on the in-situ synthesis of β-Sialon within Al_(2)O_(3)-C refractory materials,as well as its oxidation behavior,was investigated.The findings indicate that the presence of Al/Si alloy promotes the formation of AlN and SiC whiskers at 1300℃,which subsequently facilitate the production of plate-like β-Sialon at 1500℃.Density functional theory analysis reveals that the(020)crystal plane of β-Sialon exhibits the lowest adsorption energy for Al2O and AlO molecules under the influence of iron atoms,suggesting a solid-liquid-vapor growth mechanism for β-Sialon formation.The introduction of these ceramic phases significantly enhances the mechanical properties of Al_(2)O_(3)-C refractories.Specifically,the addition of 6 wt.%Al/Si alloy yielded specimens with the highest cold modulus of rupture and cold crushing strength at 1500℃,achieving values of 35.2 and 127.5 MPa,respectively--representing increases of 40.1%and 37.4%.Furthermore,during high-temperature oxidation,the formation of plate-like β-Sialon leads to the development of a dense protective layer on the surface.This impedes the diffusion pathways of oxygen and consequently enhances the oxidation resistance of the refractory.
文摘Ti3AlC2/TiC-Al2O3 composite was synthesized by a combustion reaction in TiO2-Al-C system. The effect of the compositions in raw materials on the products was investigated. Ti3AlC2/TiC-Al2O3 composite was obtained at the molar ratio of TiO2:Al:C=3.0:5.0~5.1:1.8~2.0. The reaction path for the 3TiO2-5Al- 2C system was proposed. Al3Ti, Ti203, TiO, and 6-Al2O3 are found to be transitional phases. Finally, Ti3AlC2/TiC-Al2O3 composite forms at~900℃ of furnace temperature. The measured Vickers hardness, fracture toughness, and flexural strength of the nearly dense sample from 3TiO2-5Al-2C are 13.3±1.1 GPa, 5.8±0.3 MPa.m^1/2, and 466±39 MPa, respectively.