期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Aerodynamic analysis of rotor-to-rotor interactions in different octocopter configurations
1
作者 Aqib AZIZ Yongjie SHI +1 位作者 Yang LIU Guohua XU 《Chinese Journal of Aeronautics》 2025年第3期292-315,共24页
Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different... Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance. 展开更多
关键词 Rotor-to-rotor interaction Virtual blade method Octocopter configurations aerodynamically efficient HOVER Forward f1ight
原文传递
IMPROVEMENT OF AERODYNAMIC PERFORMANCE OF SUPERSONIC AIRCRAFT USING CANARD SURFACE WITH TVFC
2
作者 Abbas L K 陈前 韩景龙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期173-184,共12页
The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the max... The purpose of increasing the aerodynamic efficiency and enhancing the supermaneuverability for the selected supersonic aircraft is presented. Aerodynamic characteristics, the surface pressure distribution and the maximum lift are estimated for the baseline configuration for different Mach numbers and attack angles in subson- ic and supersonic potential flows, using a low-order three-dimensional panel method supported with the semi-empirical formulas of the data compendium (DATCOM). Total nose-up and nose-down pitching moments about the center of gravity of the complete aircraft in the subsonic region depending on flight conditions and aircraft performance limitations are estimated. A software package is developed to implement the two-dimensional thrust vectoring flight control technique (pitch vectoring up and down) controlled by the advanced aerodynamic and control surface (the foreplane or the canard). Results show that the canard with the thrust vectoring produces enough nose-down moment and can support the stabilizer at high maneuvers. The suggested surface can increase the aerodynamic efficiency (lift-to-drag ratio) of the baseline configuration by 5%-6% in subsonic and supersonic flight regimes. 展开更多
关键词 aerodynamic efficiency MANEUVERABILITY CANARD thrust vectoring flight control (TVFC)
在线阅读 下载PDF
Aerodynamic characteristics of unsymmetrical aerofoil at various turbulence intensities 被引量:1
3
作者 S.ARUNVINTHAN S.NADARAJA PILLAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2395-2407,共13页
A series of wind tunnel tests were performed to investigate the effect of turbulent inflows on the aerodynamic characteristics of the unsymmetrical airfoil at various turbulence intensities and Reynolds number. To ass... A series of wind tunnel tests were performed to investigate the effect of turbulent inflows on the aerodynamic characteristics of the unsymmetrical airfoil at various turbulence intensities and Reynolds number. To assess the aerodynamic characteristics, surface pressure measurements were made over the unsymmetrical airfoil surface by using a simultaneous pressure scanner MPS4264 of Scanivalve make. Self-generated passive grids made of parallel arrays of round bars were placed at four different locations to generate various Turbulence Intensities(TI) in the wind tunnel. The location of the passive grid has been normalized in terms of considering the distance between the entry of the test section and the leading edge of the model. Based on the wind tunnel results, by comparing the baseline without grid low turbulence case TI = 0.51% with other turbulence generated cases like TI = 4.68%, 4.73%, 6.04% and 8.46% at different Reynolds number, it is found that the coefficient of lift increases with the increase in the turbulence intensity. Results also reveal that the flow featuring turbulence can effectively delay the stall characteristics of an airfoil by attaching the flow over the airfoil for an extended region. Additionally, attempts were made to understand the influence of turbulence on the aerodynamic hysteresis. 展开更多
关键词 aerodynamic efficiency aerodynamic hysteresis Passive grid Simultaneous pressure distribution Turbulence intensity
原文传递
Numerical evaluation of passive control of shock wave/boundary layer interaction on NACA0012 airfoil using jagged wall 被引量:3
4
作者 Mojtaba Dehghan Manshadi Ramin Rabani 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期792-804,共13页
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app... Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?. 展开更多
关键词 Jagged wall Passive flow control Shock wave/boundary layer interaction aerodynamic efficiency
在线阅读 下载PDF
Aerodynamic analysis of insect-like flapping wings in fan-sweep and parallel motions with the slit effect 被引量:1
5
作者 Zenggang Zhu Jingtai Zhao +3 位作者 Yuanyuan He Shijun Guo Si Chen Bing Ji 《Biomimetic Intelligence & Robotics》 2022年第2期55-66,共12页
In this study,the aerodynamic performance of flapping wings using a parallel motion was investigated and compared with the insect-like‘‘fan-sweep’’motion,and the effect of adding a slit to the wings was analyzed.F... In this study,the aerodynamic performance of flapping wings using a parallel motion was investigated and compared with the insect-like‘‘fan-sweep’’motion,and the effect of adding a slit to the wings was analyzed.First,numerical simulations were performed to analyze the wing aerodynamics of two flapping motions with equivalent stroke amplitudes over a range of pitching angles based on computational fluid dynamics(CFD).The simulation results indicated that flapping wings with a rapid and short parallel motion achieved better lift and efficiency than those of the fan-sweep motion while maintaining the same aerodynamic characteristics regarding stall delay and leading-edge vortices.For a parallel motion with a pitching angle of 25◦and 100 mm stroke amplitude,the wings generated an average lift of 8.4 gf with a lift-to-drag ratio of 1.06,respectively,which were 1.8%and 26%greater than those of the fan-sweep motion with a corresponding 96◦stroke amplitude.This situation was reversed when the pitching angle and stroke amplitude were increased to 45◦and 144◦for the fan-sweep motion,which was equivalent to the parallel motion with a 150 mm stroke amplitude.The slit effect in the parallel motion was also evaluated,and the CFD results indicated that a slit width of 1 mm(1/50 wing chord)increased the lift of the wing by approximately 27%in the case of the 150 mm stroke amplitude.Further,the slit width slightly influenced the lift and aerodynamic efficiency. 展开更多
关键词 Insect-like flapping wings aerodynamic efficiency Fan-sweep Parallel flapping motion Wing slit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部