期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
An adaptive turbo-shaft engine modeling method based on PS and MRR-LSSVR algorithms 被引量:5
1
作者 Wang Jiankang Zhang Haibo +2 位作者 Yan Changkai Duan Shujing Huang Xianghua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期94-103,共10页
In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support ve... In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method. 展开更多
关键词 adaptive engine model Least square support vector regression machine modeling method Parameter selection Turbo-shaft engine
原文传递
Adaptive Agent-Based Modeling Framework for Collective Decision-Making in Crowd Building Evacuation
2
作者 CHEN Feier ZHA0 Qiyuan +2 位作者 CA0 Mingming CHEN Jiagi FU Guiguan 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第4期522-533,共12页
Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (AB... Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (ABM) combines the strength of human crowd behavior description from classical social force models with discrete dynamics expression from cellular automaton models by extending the conception of floor field. Several important factors which may influence the results of decision-making of pedestrians are taken into consideration, such as the location of sign, the attraction of exit, and the interaction among pedestrians. To compare the effect of information on the pedestrians, we construct three decision-making mechanisms with different assumptions. To validate these three simulation models, we compare the numerical results from different perspectives with rational range in the case study where the Tampere Theater evacuation was carried out. The ABM framework is open for rules modification and could be applied to different building plans and has implication for architectural design of gates and signs in order to increase the evacuation efficiency. 展开更多
关键词 adaptive agent-based model evacuation simulation EMERGENCY interaction HETEROGENEITY
原文传递
MODEL REFERENCE ADAPTIVE CONTROL BASED ON NONLINEAR COMPENSATION FOR TURBOFAN ENGINE 被引量:4
3
作者 潘慕绚 黄金泉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期215-221,共7页
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe... The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system. 展开更多
关键词 turbofan engin model reference adaptive control(MRAC) functional link neural network (FLNN) hardware-in-loop(HIL) simulation
在线阅读 下载PDF
DIRECT SELF-REPAIRING CONTROL FOR HELICOPTER VIA QUANTUM CONTROL AND ADAPTIVE COMPENSATOR 被引量:1
4
作者 陈复扬 姜斌 陶钢 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期337-342,共6页
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the... A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach. 展开更多
关键词 HELICOPTER model reference adaptive control self-repairing control quantum control
在线阅读 下载PDF
Applicahon of a Simplified Model Reference Adaptive Algorithm 被引量:1
5
作者 王丽艳 宫小东 +1 位作者 金志立 曹泛 《Journal of Beijing Institute of Technology》 EI CAS 1994年第1期90+82-90,共10页
The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector... The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions. 展开更多
关键词 model reference adaptive control digital control electrohydraulic servo system
在线阅读 下载PDF
DECENTRALIZED ADAPTIVE CONTROL FOR LINEAR TIME INVARIENT SYSTEMS WITH FIRST ORDER INTERCONNECTIONS
6
作者 黄金泉 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期80-85,共6页
A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ... A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions. 展开更多
关键词 decentralized control model reference adaptive control control law numerical simulation
在线阅读 下载PDF
Design of a Kind of Model Reference Adaptive Missile Control System 被引量:1
7
作者 王军 张天桥 王正杰 《Journal of Beijing Institute of Technology》 EI CAS 1999年第1期84-88,共5页
Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the ... Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory. 展开更多
关键词 dive overhead attack anti tank missile model reference adaptive control missile control system
在线阅读 下载PDF
Composite Adaptive Control of Belt Polishing Force for Aero-engine Blade 被引量:13
8
作者 ZHsAO Pengbing SHI Yaoyao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期988-996,共9页
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot poli... The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness. 展开更多
关键词 BLADE polishing force Bang-Bang control fuzzy neural network model reference adaptive control
在线阅读 下载PDF
Adaptive Trajectory Tracking Control for a Nonholonomic Mobile Robot 被引量:14
9
作者 CAO Zhengcai ZHAO Yingtao WU Qidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期546-552,共7页
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately... As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot. 展开更多
关键词 nonholonomic mobile robot trajectory tracking model reference adaptive
在线阅读 下载PDF
An improved high-fidelity adaptive model for integrated inlet-engine-nozzle based on mechanismdata fusion 被引量:3
10
作者 Chen WANG Ziyang YU +1 位作者 Xian DU Ximing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期190-207,共18页
Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed perfor... Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed performance deviations and mismatches between the real engine and the model,failing to meet the accuracy requirements of supersonic conditions.This paper establishes a quasi-one-dimensional model for the inlet-exhaust system and conducts experimental calibration.Additionally,a mechanism-data fusion adaptive modeling scheme using an Extreme Learning Machine based on the Salp Swarm Algorithm(SSA-ELM)is proposed.The study reveals the inlet model’s efficacy in reflecting installed performance,flow matching,and mitigating pressure distortion,while the nozzle model accurately predicts flow coefficients and thrust coefficients,and identifies various operational states.The model’s output closely aligns with typical experimental parameters.By combining offline optimization and online adaptive correction,the mechanismdata fusion adaptive model substantially reduces output errors during regular flights and varying levels of degradation,and effectively handles gradual degradation within a single flight cycle.Notably,the mechanism-data fusion adaptive model holistically addresses total pressure errors within the inlet-exhaust system and normal shock location correction.This approach significantly curbs performance deviations in supersonic conditions.For example,at Ma=2.0,the system error impressively drops from 34.17%to merely 6.54%,while errors for other flight conditions consistently stay below the 2.95%threshold.These findings underscore the clear superiority of the proposed method. 展开更多
关键词 Aero-propulsion system Integrated inlet-enginenozzle Component-level model On-board adaptive model Mechanism-data fusion Extreme learning machine
原文传递
Adaptive-surrogate-based robust optimization of transonic natural laminar flow nacelle 被引量:4
11
作者 Yuan YAO Dongli MA +2 位作者 Muqing YANG Liang ZHANG Yang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第10期36-52,共17页
Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.T... Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.Therefore,it’s imperative to incorporate uncertainties into the design of NLF nacelle.In this study,for a robust optimization of NLF nacelle and for improving its efficiency,an adaptive-surrogate-based robust optimization strategy is established,which is an iterative optimization process where the surrogate model is updated to obtain the real Pareto front of multi-objective optimization problem.A case study is carried out to validate its feasibility and effectiveness.The results show that the optimization increases the favorable pressure gradient region and the volume ratio of the nacelle by increasing its lip radius and reducing its maximum diameter.And the aerodynamic robustness of the NLF nacelle is mainly determined by the lip radius,maximum diameter of nacelle and location of the maximum diameter.Compared to the initial nacelle,the optimized nacelle maintains a wide range of low drag and high laminar flow ratio in the disturbance space,which extends the average laminar flow region to 21.6%and facilitates a decrease of 1.98 counts in the average drag coefficient. 展开更多
关键词 adaptive surrogate model Aerodynamic robustness Multi-objective optimization Natural laminar flow nacelle Uncertain working conditions
原文传递
Robust control with compensation of adaptive model for dual-stage inertially stabilized platform 被引量:3
12
作者 SONG Jiang-peng ZHOU Di +1 位作者 SUN Guang-li QI Zhi-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2615-2625,共11页
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec... To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method. 展开更多
关键词 dual-stage control inertially stabilized platform robust H∞control adaptive model
在线阅读 下载PDF
MULTIVARIABLE MODEL REFERENCE ADAPTIVE CONTROL FOR A TURBOFAN ENGINE 被引量:6
13
作者 Fan Jun Huang Jinquan +1 位作者 Sun Jianguo Feng Zhengping(Dep. Of Power Engineering, Nanjing University of Aeronauticsand Astronautics, Nanjing,China, 210026) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第4期300-304,共5页
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan... A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications. 展开更多
关键词 turbofan engines model reference adaptive control flight envelopes multivariable control
在线阅读 下载PDF
Application of a Robust Model Reference Adaptive Control Algorithm to a Nonlinear Automotive Actuator 被引量:6
14
作者 Alessandro di Gaeta Umberto Montanaro 《International Journal of Automation and computing》 EI CSCD 2014年第4期377-391,共15页
Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adap... Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains. 展开更多
关键词 Model reference adaptive control robust adaptive control nonlinear systems automotive control electronic throttle body electromechanical actuators
原文传递
Modified robust optimal adaptive control for flight environment simulation system with heat transfer uncertainty 被引量:6
15
作者 Meiyin ZHU Xi WANG +7 位作者 Xitong PEI Song ZHANG Zhihong DAN Nannan GU Shubo YANG Keqiang MIAO Huairong CHEN Jiashuai LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期420-431,共12页
To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structur... To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does. 展开更多
关键词 Altitude ground test facilities Flight environment simulation system Heat transfer Model reference adaptive control Optimal control modification UNCERTAINTY
原文传递
An improved nonlinear onboard adaptive model for aero-engine performance control 被引量:2
16
作者 Qian CHEN Hanlin SHENG Tianhong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期317-334,共18页
The onboard adaptive model can achieve the online real-time estimation of performance parameters that are difficult to measure in a real aero-engine,which is the key to realizing modelbased performance control.It must... The onboard adaptive model can achieve the online real-time estimation of performance parameters that are difficult to measure in a real aero-engine,which is the key to realizing modelbased performance control.It must possess satisfactory numerical stability and estimation accuracy.However,the positive definiteness of the state covariance matrix may be destroyed in filter estimation because of the existence of some uncertain factors,such as the accumulated measurement error,noise,and disturbance in the strongly nonlinear engine system,inevitably causing divergence of estimates of Cholesky decomposition-based Spherical Unscented Kalman Filter(SUKF).Therefore,this paper proposes an improved SUKF algorithm(iSUKF)and applies it to the performance degradation estimation of the engine.Compared to SUKF,the iSUKF mainly replaces the Cholesky decomposition with the Singular Value Decomposition(SVD),which is numerically stable without any strict requirement for the state covariance matrix.Meanwhile,a correction factor is designed to assess the measurement deviation between the real engine and the nonlinear onboard model to correct the state covariance matrix,thus maintaining better numerical stability of parameters estimated by the filter.Then,an offline correction strategy is also proposed to eliminate the influence of the degradation of unestimated health parameters or the filter’s inadequate estimation of the coupled health parameters.This action effectively promotes the onboard adaptive model’s estimation accuracy concerning the degradation of the engine’real health parameters and its performance parameters.Finally,the simulation results show that the iSUKF can maintain the numerical stability of the filter’s estimation of health parameters.Compared with the existing methods,the offline correction strategy improves the estimation accuracy of the iSUKF-based nonlinear onboard adaptive model for the performance parameters of the real engine by more than 50%.The proposed method will provide feasible technical support for model-based aero-engine performance control. 展开更多
关键词 AERO-ENGINE Onboard adaptive model Spherical unscented Kalman filter Parameter estimation iSUKF
原文传递
Field study of seasonal thermal comfort and adaptive behavior for occupants in residential buildings of Xi’an,China 被引量:3
17
作者 WEI Na ZHENG Wu-xing +3 位作者 ZHANG Nan ZHAO Sheng-kai ZHAI Yong-chao YANG Liu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2403-2414,共12页
The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential... The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region. 展开更多
关键词 thermal comfort seasonal variation adaptive thermal comfort model energy saving residential buildings
在线阅读 下载PDF
Multi-loop adaptive internal model control based on a dynamic partial least squares model 被引量:3
18
作者 Zhao ZHAO Bin HU Jun LIANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第3期190-200,共11页
A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,... A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) frame-work is proposed to account for plant model errors caused by slow aging,drift in operational conditions,or environmental changes.Since PLS decomposition structure enables multi-loop controller design within latent spaces,a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space.In each latent subspace,once the model error exceeds a specific threshold,online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm.Because the IMC extracts the inverse of the minimum part of the internal model as its structure,the IMC controller is self-tuned by explicitly updating the parameters,which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed,and proved to be effective.Finally,the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay. 展开更多
关键词 Partial least squares (PLS) adaptive internal model control (IMC) Recursive least squares (RLS)
原文传递
Cooperative interception with fast multiple model adaptive estimation 被引量:3
19
作者 Shao-bo Wang Yang Guo +2 位作者 Shi-cheng Wang Zhi-guo Liu Shuai Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1905-1917,共13页
For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For ... For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang For the case that two pursuers intercept an evasive target,the cooperative strategies and state estimation methods taken by pursuers can seriously affect the guidance accuracy for the target,which performs a bang-bang evasive maneuver with a random switching time.Combined Fast multiple model adaptive estimation(Fast MMAE)algorithm,the cooperative guidance law takes detection configuration affecting the accuracy of interception into consideration.Introduced the detection error model related to the line-of-sight(LOS)separation angle of two interceptors,an optimal cooperative guidance law solving the optimization problem is designed to modulate the LOS separation angle to reduce the estimation error and improve the interception performance.Due to the uncertainty of the target bang-bang maneuver switching time and the effective fitting of its multi-modal motion,Fast MMAE is introduced to identify its maneuver switching time and estimate the acceleration of the target to track and intercept the target accurately.The designed cooperative optimal guidance law with Fast MMAE has better estimation ability and interception performance than the traditional guidance law and estimation method via Monte Carlo simulation. 展开更多
关键词 Cooperative guidance Optimal control Fast multiple model adaptive estimation (fast MMAE) Bang-bang maneuver Switch time Detection configuration Estimation error
在线阅读 下载PDF
Robust adaptive control of hypersonic vehicle considering inlet unstart 被引量:6
20
作者 WANG Fan FAN Pengfei +2 位作者 FAN Yonghua XU Bin YAN Jie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期188-196,共9页
In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight tech... In this paper,a model reference adaptive control(MRAC)augmentation method of a linear controller is proposed for air-breathing hypersonic vehicle(AHV)during inlet unstart.With the development of hypersonic flight technology,hypersonic vehicles have been gradually moving to the stage of weaponization.During the maneuvers,changes of attitude,Mach number and the back pressure can cause the inlet unstart phenomenon of scramjet.Inlet unstart causes significant changes in the aerodynamics of AHV,which may lead to deterioration of the tracking performance or instability of the control system.Therefore,we firstly establish the model of hypersonic vehicle considering inlet unstart,in which the changes of aerodynamics caused by inlet unstart is described as nonlinear uncertainty.Then,an MRAC augmentation method of a linear controller is proposed and the radial basis function(RBF)neural network is used to schedule the adaptive parameters of MRAC.Furthermore,the Lyapunov function is constructed to prove the stability of the proposed method.Finally,numerical simulations show that compared with the linear control method,the proposed method can stabilize the attitude of the hypersonic vehicle more quickly after the inlet unstart,which provides favorable conditions for inlet restart,thus verifying the effectiveness of the augmentation method proposed in the paper. 展开更多
关键词 air-breathing hypersonic vehicle(AHV) inlet unstart model reference adaptive control augmentation(MRAC) radial basis function(RBF)neural network
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部