Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical res...Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.展开更多
Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved ...Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved when the linear system is consistent.Numerical experiments demonstrate that the proposed method is effective and more efficient than several existing classical Kaczmarz methods.展开更多
We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalize...We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.展开更多
Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained...Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.展开更多
基金This research was funded by Fundamental Research Grant Scheme(FRGS)under the Ministry of Higher Education Malaysia,grant number with project ref:FRGS/1/2019/STG06/UTP/03/2.
文摘Multistep integration methods are being extensively used in the simulations of high dimensional systems due to their lower computational cost.The block methods were developed with the intent of obtaining numerical results on numerous points at a time and improving computational efficiency.Hybrid block methods for instance are specifically used in numerical integration of initial value problems.In this paper,an optimized hybrid block Adams block method is designed for the solutions of linear and nonlinear first-order initial value problems in ordinary differential equations(ODEs).In deriving themethod,the Lagrange interpolation polynomial was employed based on some data points to replace the differential equation function and it was integrated over a specified interval.Furthermore,the convergence properties along with the region of stability of the method were examined.It was concluded that the newly derived method is convergent,consistent,and zero-stable.The method was also found to be A-stable implying that it covers the whole of the left/negative half plane.From the numerical computations of absolute errors carried out using the newly derived method,it was found that the method performed better than the ones with which we compared our results with.Themethod also showed its superiority over the existing methods in terms of stability and convergence.
基金supported by the National Natural Science Foundation of China(No.12071149)the Science and Technology Commission of Shanghai Municipality of China(No.22DZ2229014)the National Key R&D Program of China(No.2022YFA1004403).
文摘Based on the greedy randomized Kaczmarz(GRK)method,we propose a multi-step greedy Kaczmarz method for solving large-scale consistent linear systems,utilizing multi-step projection techniques.Its convergence is proved when the linear system is consistent.Numerical experiments demonstrate that the proposed method is effective and more efficient than several existing classical Kaczmarz methods.
基金Acknowledgements. We would like to thank the editors for their valuable suggestions and corrections. This research is supported by the National Natural Science Foundation of China (Grant Nos. 10471145 and 10672143), and by Morningside Center of Mathematics, Chinese Academy of Sciences.
文摘We prove that any linear multi-step method G1^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(Zk) with odd order u (u≥ 3) cannot be conjugate to a symplectic method G2^T of order w (w 〉 u) via any generalized linear multi-step method G3^T of the form ∑k=0^mαkZk = T∑k=0^mβkJ^-1↓ΔH(∑l=0^mγklZl). We also give a necessary condition for this kind of generalized linear multi-step methods to be conjugate-symplectic. We also demonstrate that these results can be easily extended to the case when G3^T is a more general operator.
基金This research is supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences "Supercomputing Environment Construction and Application" (INF105-SCE), and by a grant (No. 10471145) from National Natural Science Foundation of China.
文摘Using least parameters, we expand the step-transition operator of any linear multi-step method (LMSM) up to O(τ^s+5) with order s = 1 and rewrite the expansion of the steptransition operator for s = 2 (obtained by the second author in a former paper). We prove that in the conjugate relation G3^λτ o G1^τ =G2^τ o G3^λτ with G1 being an LMSM,(1) theorder of G2 can not be higher than that of G1; (2) if G3 is also an LMSM and G2 is a symplectic B-series, then the orders of G1, G2 and G3 must be 2, 2 and 1 respectively.