期刊文献+
共找到928篇文章
< 1 2 47 >
每页显示 20 50 100
基于改进AdaBoost.RT和KELM的风功率预测方法研究 被引量:36
1
作者 胡梦月 胡志坚 +1 位作者 仉梦林 傅晨宇 《电网技术》 EI CSCD 北大核心 2017年第2期536-542,共7页
为了提高风功率预测精度及预测模型的泛化能力,提出基于改进Ada Boost.RT算法的风功率预测方法,可以有效提高弱学习算法的性能。首先建立核极限学习机(kernel extreme learning machine,KELM)模型,并用改进蝙蝠算法对其参数进行优化,通... 为了提高风功率预测精度及预测模型的泛化能力,提出基于改进Ada Boost.RT算法的风功率预测方法,可以有效提高弱学习算法的性能。首先建立核极限学习机(kernel extreme learning machine,KELM)模型,并用改进蝙蝠算法对其参数进行优化,通过引入局部搜索和莱维飞行使算法具有更好的搜索能力和跳出局部最优的能力。在此基础上进一步通过Ada Boost.RT算法生成多个KELM个体(即基学习器),在训练过程中不断调整每个基学习器的权重及训练集中每个样本的权重。最后用训练好的基学习器来对测试样本进行预测,并集成得到最终结果。从不同时间尺度应用不同月份的风电场数据进行仿真测试,同时与前馈(back propagation,BP)神经网络、支持向量机、极限学习机等预测模型对比,仿真结果表明所提方法具有较好的预测精度及泛化性能。 展开更多
关键词 风功率预测 基学习器 adaboost.rt 核极限学习机 蝙蝠算法
原文传递
基于HI-DD-AdaBoost.RT的锂离子动力电池SOH预测 被引量:7
2
作者 田慧欣 秦鹏亮 +1 位作者 李坤 王红一 《控制与决策》 EI CSCD 北大核心 2021年第3期686-692,共7页
锂离子电池是一个复杂的电化学动态系统,实时准确的健康状态(SOH)估计对电动汽车动力锂电池的维护至关重要,传统建模方法难以实现SOH的在线估算.基于此,从实时评估电池的SOH出发,在增量学习的基础上,选取与电池健康状态相关的指标建立SO... 锂离子电池是一个复杂的电化学动态系统,实时准确的健康状态(SOH)估计对电动汽车动力锂电池的维护至关重要,传统建模方法难以实现SOH的在线估算.基于此,从实时评估电池的SOH出发,在增量学习的基础上,选取与电池健康状态相关的指标建立SOH预测模型.考虑到增量学习中的耗时性问题,提出融合滑动窗口技术的HI-DD算法,该算法可以检测概念漂移是否发生,从而指导和确定模型更新位置;设计出HI-DD与AdaBoost.RT结合的模型更新策略,进而提高模型的在线学习性能和预测精度,最后使用CALCE提供的电池老化实验数据对所提出的方法进行验证.结果表明,基于增量学习的HI-DD-AdaBoost.RT预测算法具有较强的在线更新能力和较高的预测精度,能够满足SOH在线预测的实际需求. 展开更多
关键词 锂离子动力电池 SOH 增量学习 HI-DD 概念漂移 adaboost.rt
原文传递
一种快速AdaBoost.RT集成算法时间序列预测研究 被引量:5
3
作者 严智 张鹏 +2 位作者 谢川 张钰林 李保军 《电子测量与仪器学报》 CSCD 北大核心 2019年第6期82-88,共7页
传统AdaBoost.RT算法的训练样本容易向小值样本集中,难以避免加权错误率低而真实错误率高的弱学习机,且迭代训练的速度较慢。针对这一问题,首先重新设计了相对误差函数和样本权重的更新方式;然后通过减少迭代训练中的样本规模提出了基... 传统AdaBoost.RT算法的训练样本容易向小值样本集中,难以避免加权错误率低而真实错误率高的弱学习机,且迭代训练的速度较慢。针对这一问题,首先重新设计了相对误差函数和样本权重的更新方式;然后通过减少迭代训练中的样本规模提出了基于权重的自适应样本剔除快速AdaBoost.RT算法;最后将AdaBoost.RT算法应用于航空发动机起动阶段状态趋势监控。实验结果表明,快速AdaBoost.RT算法预测误差均值减少了0. 128 4和0. 263 2,误差标准差减少了0. 022 3和1. 794 4,虚警次数减少了5次,训练速度提升了53%。实验表明,快速AdaBoost.RT算法能有效监控航空发动机起动阶段的状态趋势,具有预测误差小、训练速度快、虚警率低等优点,对提高装备维护效率具有一定的参考意义。 展开更多
关键词 adaboost.rt 时间序列 自适应样本剔除 集成学习 航空发动机 趋势监控
原文传递
自适应阈值AdaBoost.RT算法及其在轴承剩余寿命预测中的应用 被引量:2
4
作者 汪森辉 王成 +2 位作者 孙坤 何祥 杨科 《科学技术与工程》 北大核心 2023年第13期5530-5538,共9页
针对自适应增强回归阈值(adaptive boosting regression threshold,AdaBoost.RT)算法用于判断训练样本好坏的阈值为常数,不能自适应地对每个测试样本动态调整判断标准的问题,提出了一种动态自适应调整阈值的改进AdaBoost.RT算法。通过... 针对自适应增强回归阈值(adaptive boosting regression threshold,AdaBoost.RT)算法用于判断训练样本好坏的阈值为常数,不能自适应地对每个测试样本动态调整判断标准的问题,提出了一种动态自适应调整阈值的改进AdaBoost.RT算法。通过引入训练结果的均值与标准差构造奇异系数作为判断相对误差的阈值,实现算法训练计算过程中阈值的自适应调整,在提高预测精度的同时,可以减少选择算法参数带来的繁重工作量。采用4组经典测试函数构造不同规模的训练样本数据进行算法检验,实验结果表明,提出的自适应调整阈值算法可以有效利用测试样本之间的差异性,克服了大噪声数据带来的干扰,改进后的集成算法可以改善回归模型的预测效果,提高模型的泛化性能。利用IEEE PHM 2012数据集验证所提方法的有效性,并与极限学习机(extreme learning machine,ELM)和原始AdaBoost.RT算法进行对比分析。结果表明:采用所提方法获得的轴承寿命预测均方根误差降低了5.18%,决定系数提高了3.11%。 展开更多
关键词 adaboost.rt算法 自适应阈值 极限学习机 滚动轴承 剩余寿命预测
在线阅读 下载PDF
Yarn Quality Prediction for Small Samples Based on AdaBoost Algorithm 被引量:1
5
作者 刘智玉 陈南梁 汪军 《Journal of Donghua University(English Edition)》 CAS 2023年第3期261-266,共6页
In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo... In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples. 展开更多
关键词 stability and generalization ability for small samples.Key words:yarn quality prediction AdaBoost algorithm small sample generalization ability
在线阅读 下载PDF
MLSI-RT: memorize LOS range measurements identified residual test location algorithm and performance analysis
6
作者 马兵 邢建平 张军 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期190-193,共4页
The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagati... The dominant error source of mobile terminal location in wireless sensor networks (WSNs) is the non-line-of-sight (NLOS) propagation error. Among the algorithms proposed to mitigate the influence of NLOS propagation error, residual test (RT) is an efficient one, however with high computational complexity (CC). An improved algorithm that memorizes the light of sight (LOS) range measurements (RMs) identified memorize LOS range measurements identified residual test (MLSI-RT) is presented in this paper to address this problem. The MLSI-RT is based on the assumption that when all RMs are from LOS propagations, the normalized residual follows the central Chi-Square distribution while for NLOS cases it is non-central. This study can reduce the CC by more than 90%. 展开更多
关键词 memorize LOS range measurements identified residual test (MLSI-RT) computational complexity (CC) nonline-of-sight (NLOS) residual test (RT) algorithm simplified residual test (SRT)
在线阅读 下载PDF
Fault Tolerance in the Joint EDF-RMS Algorithm: A Comparative Simulation Study
7
作者 Rashmi Sharma Nitin Nitin Deepak Dahiya 《Computers, Materials & Continua》 SCIE EI 2022年第9期5197-5213,共17页
Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tas... Failure is a systemic error that affects overall system performance and may eventually crash across the entire configuration.In Real-Time Systems(RTS),deadline is the key to successful completion of the program.If tasks effectively meet the deadline,it means the system is working in pristine order.However,missing the deadline means a systemic fault due to which the system can crash(hard RTS)or degrade inclusive performance(soft RTS).To fine-tune the RTS,tolerance is the critical issue and must be handled with extreme care.This article explains the context of fault tolerance with improvised Joint EDF-RMS algorithm in RTS.The backup method has been derived to prevent the system from being recursively migrating the same task.If any task migrates three times,this migrated task will get shifted to the backup queue.This backup queue assigns the task to a backup processor and is destined for final execution.For performance evaluation purposes,a relative graph between fault and failure rates,failure and total processor utilization along with other averages have been evaluated.Furthermore,these archived results are compared with fault-tolerant Earliest Deadline First(EDF)and Rate Monotonic Scheduling(RMS)algorithms independently in relatively similar conditions.These comparisons show better performance against overloading conditions. 展开更多
关键词 Fault tolerance joint edf-rms algorithm real-time systems(RTS) distributed systems migration
在线阅读 下载PDF
The Study of Multi-Expression Classification Algorithm Based on Adaboost and Mutual Independent Feature
8
作者 Liying Lang Zuntao Hu 《Journal of Signal and Information Processing》 2011年第4期270-273,共4页
In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expre... In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expression classification algorithm which is based on Adaboost and mutual independent feature is proposed. In order to effectively and quickly train threshold values of weak classifiers of features, Sample of training is carried out simple improvement. We obtain a good classification results through experiments. 展开更多
关键词 ADABOOST Multi-Expression Classification algorithm Local FEATURE FEATURE Extraction SAMPLE Training
在线阅读 下载PDF
基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测 被引量:9
9
作者 姜香菊 王瑞彤 马彦鸿 《电工技术学报》 北大核心 2025年第3期842-854,共13页
随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量... 随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量级EMO作为算法特征提取主干,充分学习绝缘子目标的长距离特征交互及缺陷小目标的局部特征交互,并提出基于轻量级注意力的尺度内特征交互模块和轻量级跨尺度特征融合模块设计轻量级高效混合编码器;再次,在轻量级高效混合编码器中引入定位信息补充分支、使用DIoU损失函数结合迁移学习训练技巧,缓解轻量化造成的算法精度下降问题;最后,构建多天气条件绝缘子数据集进行训练验证。实验结果表明,相较于基线算法,所提算法检测精度达到97.2%,只损失0.7个百分点,而参数量和计算量分别下降67.8%和71.2%,检测速度提升2.5倍,满足多天气条件下的输电线路绝缘子状态巡检准确率及边缘部署轻量化要求。 展开更多
关键词 绝缘子缺陷检测 RT-DETR算法 轻量化 边缘部署 目标检测算法
在线阅读 下载PDF
基于多维度特征和LightGBM-AdaBoost的WebShell检测方法
10
作者 高见 何俊鹏 苗青青 《信息网络安全》 北大核心 2025年第8期1231-1239,共9页
针对传统文本检测方法在WebShell文件检测中的准确率较低、现有机器学习或深度学习算法多聚焦于PHP类型的WebShell检测,同时特征选取存在一定局限性,文章提出构建涵盖文件本体特征、官方标准特征以及BERT语义特征的高维度特征空间,并设... 针对传统文本检测方法在WebShell文件检测中的准确率较低、现有机器学习或深度学习算法多聚焦于PHP类型的WebShell检测,同时特征选取存在一定局限性,文章提出构建涵盖文件本体特征、官方标准特征以及BERT语义特征的高维度特征空间,并设计了LightGBM-AdaBoost集成检测模型,以解决复杂语言下简单特征难以区分正常文件和WebShell的问题,实现了PHP与JSP类型WebShell的高效区分。实验结果表明,基于多维度特征和LightGBM-AdaBoost的WebShell检测方法,在PHP与JSP类型WebShell检测任务中准确率分别高达99.81%和98.93%。相比于现有方法,文章所提方法显著提升了检测准确率,并扩展了检测类型。 展开更多
关键词 WebShell检测 多维度特征 LightGBM算法 ADABOOST算法
在线阅读 下载PDF
基于代价敏感学习的上市公司财务困境动态预测模型
11
作者 李大元 颜卓惠 曾阳艳 《系统工程》 北大核心 2025年第2期1-14,共14页
为了保障企业的财务健康,准确且有效的财务困境预测模型至关重要。然而,类别不平衡和概念漂移是财务困境预测领域需要解决的两个关键问题。为此,本文基于代价敏感学习和带时间加权的Adaboost方法提出了一种兼顾类别不平衡和概念漂移的... 为了保障企业的财务健康,准确且有效的财务困境预测模型至关重要。然而,类别不平衡和概念漂移是财务困境预测领域需要解决的两个关键问题。为此,本文基于代价敏感学习和带时间加权的Adaboost方法提出了一种兼顾类别不平衡和概念漂移的动态财务困境预测方法,并在2005年至2022年间中国上市公司的动态不平衡数据集上进行了实证分析。结果表明,该方法在动态不平衡数据集上的预测性能优于改进前的模型,能够同时处理财务困境预测领域的概念漂移问题和数据分布不平衡问题。 展开更多
关键词 动态财务困境预警 不平衡数据 概念漂移 代价敏感学习 ADABOOST算法
原文传递
SDH-DETR轻量化绝缘子缺陷检测算法
12
作者 周景 刘心 +1 位作者 唐振洋 董晖 《电子测量技术》 北大核心 2025年第11期88-104,共17页
为解决无人机在输电线路绝缘子巡检中目标检测算法面临的模型复杂度高、小目标缺陷检测精度不足和上下采样过程中容易造成特征丢失等挑战,本文提出了一种基于轻量化改进的RT-DETR绝缘子缺陷检测算法(SDH-DETR)。首先,以RT-DETR作为基线... 为解决无人机在输电线路绝缘子巡检中目标检测算法面临的模型复杂度高、小目标缺陷检测精度不足和上下采样过程中容易造成特征丢失等挑战,本文提出了一种基于轻量化改进的RT-DETR绝缘子缺陷检测算法(SDH-DETR)。首先,以RT-DETR作为基线算法,降低优化难度并提高鲁棒性;其次,采用轻量级StarNet作为主干网络,在显著降低模型复杂度的同时提升特征提取能力;接着,引入DySample动态上采样模块,通过基于采样点的自适应上采样方法,有效减少细节丢失与图像失真;最后,利用Harr小波变换下采样模块(HWD),实现低频与高频信息的高效融合,抑制复杂背景干扰并增强对小目标的检测能力。在复杂背景数据集上的验证实验表明,SDH-DETR的平均精度达98.5%,较基线算法提升0.9%,参数量和计算量分别减少43%和46.1%,检测速度达78.6 fps。这表明该算法在保证高准确性的同时,实现了轻量化设计,满足了输电线路巡检对效率和性能的实际需求。 展开更多
关键词 输电线路 目标检测 绝缘子缺陷检测 复杂背景 轻量化 RT-DETR算法
原文传递
基于改进RT-DETR的航拍图像小目标检测算法 被引量:1
13
作者 宣岁寒 罗印升 宋伟 《电光与控制》 北大核心 2025年第4期44-51,共8页
实时、准确地定位与识别航拍图像中飞机、轮船和车辆等目标是进一步决策的根本基础,针对航拍图像中小目标检测存在的效率和精度低等问题,提出了一种基于改进RT-DETR的航拍图像小目标检测算法。首先,通过构建高效的CCFM-P2ASF尺度序列特... 实时、准确地定位与识别航拍图像中飞机、轮船和车辆等目标是进一步决策的根本基础,针对航拍图像中小目标检测存在的效率和精度低等问题,提出了一种基于改进RT-DETR的航拍图像小目标检测算法。首先,通过构建高效的CCFM-P2ASF尺度序列特征融合模块,获得更丰富的语义信息,同时提高对小目标的敏感度;其次,集成灵活性更强的可学习的位置编码,提供更清晰的位置界定;然后,设计更高效的边界框损失函数,减小对目标位置预测的偏差,提供更准确的边界框信息;最后,构建EMA重参数响应模块,从而更有效地提取输入图像特征。实验结果表明:改进后的RT-DETR模型较原始模型参数量减少38.3%,精确率、mAP50和mAP50∶95指标分别提升5.1、5.0和2.2个百分点。对比其他同类主流算法模型,在航拍小目标检测任务中具有更好的检测效果。 展开更多
关键词 小目标检测 RT-DETR算法 特征融合 定位损失 位置编码
在线阅读 下载PDF
基于集成学习和卷积神经网络的电网客服短期话务量预测 被引量:1
14
作者 覃浩 苏立伟 +5 位作者 伍广斌 蒋崇颖 徐智鹏 康峰 谭火超 张勇军 《上海交通大学学报》 北大核心 2025年第2期266-273,共8页
现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进... 现代供电服务体系对用电客户服务的服务质量提出更高要求,精准的供电服务话务量预测不仅可以提高用电客户服务质量,还能有效降低客服人员成本.为此,基于集成学习和卷积神经网络提出一种电网短期话务量预测方法.首先,采用孤立森林算法进行异常数据识别,建立拉格朗日插值函数对异常数据或缺失数据进行修补;其次,利用层次分析法量化用户信息、气象信息和停电信息,采用灰色关联法分析话务量的影响因子,将影响因子作为话务量预测模型输入;然后,构建自适应增强(Adaboost)算法集成多个卷积神经网络(CNN)模型,提出一种Adaboost-CNN的话务量预测模型;最后,考虑供电服务系统增值服务,对预测结果进行修正,得到最终的话务量预测值.算例分析表明,所提预测模型较单一预测模型误差平均减少11.05个百分点、较组合预测模型误差平均减少5.32个百分点,具有更好的预测精度. 展开更多
关键词 现代供电服务体系 话务量预测 ADABOOST算法 卷积神经网络 孤立森林算法 增值服务
在线阅读 下载PDF
基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术 被引量:3
15
作者 姚翔曦 张英 +2 位作者 张国治 刘君 王明伟 《南方电网技术》 北大核心 2025年第6期14-25,共12页
针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器... 针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术。首先,针对不平衡样本数据集利用安全级别合成少数过采样技术(safelevel synthetic minority over-sampling technique,Safe-Level SMOTE)对原始的变压器故障样本集进行了数据扩充,然后利用核主成分分析(kernel principal component analysis,K-PCA)算法对比值化后的油色谱数据进行故障特征优化提取。其次在北方苍鹰优化算法(northern goshawk optimization,NGO)中融合了正余弦和折射反向学习策略,利用测试函数验证该算法的稳定性和利用SCNGO优化算法提高其寻优能力。最后通过实际的对未扩充样本诊断和其他方法诊断进行对比分析,结果证明该方法能够有效地提高变压器故障诊断的性能。 展开更多
关键词 油浸式变压器故障诊断 数据扩充 特征优选 支持向量机 SCNGO优化算法 ADABOOST算法
在线阅读 下载PDF
基于混合神经网络的水合物无机盐抑制剂浓度预测
16
作者 王健 徐加放 +4 位作者 王博闻 王亚华 陈杰 王潇辉 杨晓龙 《中国石油大学学报(自然科学版)》 北大核心 2025年第6期172-180,共9页
以NaCl浓度预测为例,将核主成分分析(KPCA)处理后的温度、压力和气体组分作为输入参数,利用小波神经网络(WNN)对NaCl浓度进行预测,并通过遗传退火算法(GASA)和AdaBoost算法对WNN进行优化,建立AdaBoost-GASA-WNN水合物抑制剂NaCl浓度预... 以NaCl浓度预测为例,将核主成分分析(KPCA)处理后的温度、压力和气体组分作为输入参数,利用小波神经网络(WNN)对NaCl浓度进行预测,并通过遗传退火算法(GASA)和AdaBoost算法对WNN进行优化,建立AdaBoost-GASA-WNN水合物抑制剂NaCl浓度预测模型。结果表明,经过KPCA处理后模型的均方误差(e_(MSE))降低了3.87,优化后模型的e_(MSE)进一步降低到9.51,与ELM、KNN、RF模型和数据拟合方法相比,e_(MSE)分别低5.8、17.74、2.91和8.81,预测效果最好。 展开更多
关键词 水合物防治 无机盐抑制剂 神经网络 优化算法 ADABOOST算法
在线阅读 下载PDF
基于Adaboost回归的6061铝合金单点增量成形最大成形深度预测
17
作者 梁智凯 张志超 +1 位作者 胡蓝 庞秋 《材料工程》 北大核心 2025年第4期23-34,共12页
单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量... 单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量、进给速度和自转速度等参数对最大成形深度的影响。根据实验结果搭建基于Adaboost算法的回归模型,对6061铝合金薄板在100 mm成形直径下的成形深度进行预测。结果表明:单因素对最大成形深度的影响由大到小分别为:厚度、层进量、角度量、进给速度、自转速度,且在最快成形速度下获得的最大成形角度为70°,板料厚度为1 mm,层进量为0.2 mm,进给速度为2000 mm/min,自转速度为2000 r/min。此外,依据正交实验创建的回归模型具有高准确度,与Abaqus仿真结果及实际实验结果均对应,4组测试与仿真最大误差为4.24%,与实际成形最大误差值为-2.45%。 展开更多
关键词 单点增量成形 工艺参数 6061铝合金 ADABOOST算法 回归模型
在线阅读 下载PDF
基于时间加权和AdaBoost集成的动态多因子选股模型 被引量:1
18
作者 杨园园 鲁统宇 +1 位作者 任婷婷 许文甫 《系统工程》 北大核心 2025年第1期124-135,共12页
本文重点研究了如何有效地构建动态的量化选股模型。考虑到股票数据中存在的概念漂移现象,构建一种基于时间加权和AdaBoost支持向量机集成的动态选股模型——ADASVM-TW^(*)。该模型通过将时间权重嵌入ADASVM中,根据样本的新旧以及是否... 本文重点研究了如何有效地构建动态的量化选股模型。考虑到股票数据中存在的概念漂移现象,构建一种基于时间加权和AdaBoost支持向量机集成的动态选股模型——ADASVM-TW^(*)。该模型通过将时间权重嵌入ADASVM中,根据样本的新旧以及是否错分更新样本权重。考虑到因子的时变性,采用随机森林算法进行动态因子选择。以2011年至2020年上证50各成分股为研究对象进行实证研究。研究发现,ADASVM-TW^(*)模型的平均准确率和平均精度分别达到了53.24%和56.10%,基于预测结果构建的投资组合实现了29.86%的年化收益率,远高于其他投资组合和基准,并且该模型同时通过了显著性检验和稳健性检验。 展开更多
关键词 动态选股 概念漂移 ADABOOST 支持向量机 集成算法
原文传递
基于图像特征学习的服装款式多标签分类方法
19
作者 胡泠泠 董丽 《毛纺科技》 北大核心 2025年第12期94-100,共7页
为解决服装设计款式分类中普遍存在的标签单一、难以全面描述款式多样性的问题,充分捕捉服装设计的丰富性,提出一种基于图像特征学习的服装款式多标签分类方法。首先分别提取服装图像的全局轮廓特征和局部纹理特征,然后通过图像预处理... 为解决服装设计款式分类中普遍存在的标签单一、难以全面描述款式多样性的问题,充分捕捉服装设计的丰富性,提出一种基于图像特征学习的服装款式多标签分类方法。首先分别提取服装图像的全局轮廓特征和局部纹理特征,然后通过图像预处理技术改善所提取数据的质量,以全面捕捉服装款式的多样性。最后使用Ada Boost算法构建一个多标签分类模型,利用该模型计算每个服装类别的概率,最大概率对应的类别就是最终的分类结果。实验结果表明:该方法的对数损失最小,能够显著提高服装款式分类准确率,具备良好的泛化能力,有效解决了现有模型多义性与模糊性问题,为服装设计领域的智能化分类提供了新的思路与解决方案。 展开更多
关键词 图像特征 服装款式 预处理 ADABOOST算法 多标签分类方法
在线阅读 下载PDF
基于Adaboost算法的油田值守站场进入人员身份自动化识别系统 被引量:1
20
作者 白宪丽 《自动化与仪表》 2025年第4期91-94,共4页
油田值守站场环境复杂嘈杂,导致对进入站场的人员身份识别存在困难。Adaboost算法具有较强的适应性,适用于复杂环境。为此,研究了基于Adaboost算法的油田值守站场进入人员身份自动化识别系统。该系统通过视频监控模块实时采集人员视频图... 油田值守站场环境复杂嘈杂,导致对进入站场的人员身份识别存在困难。Adaboost算法具有较强的适应性,适用于复杂环境。为此,研究了基于Adaboost算法的油田值守站场进入人员身份自动化识别系统。该系统通过视频监控模块实时采集人员视频图像,以Adaboost算法为核心的人脸检测模块检测人脸区域,再以SIFT算法为核心的身份识别模块提取人脸特征并与员工信息库比对,实现身份自动化识别。结果显示,该系统人脸检测、特征提取效果显著,能应对不同光照条件,精准识别人员身份,并在识别不通过时预警,有效避免油田风险事件。 展开更多
关键词 ADABOOST算法 油田值守站场 进入人员 身份识别 人脸检测 SIFT算法
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部