针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水...针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水污染溯源结果的影响,并由此提出了基于等距随机抽样方法(equidistant random sampling)的两阶段多链Metropolis Hastings算法(ERS-TSMH).仿真结果表明,传统的MH算法和TSMH算法在求解时易陷入局部最优值或不收敛的情况,前者接受率在20%左右,后者却达到近50%;多链ERS-MH算法提高了反演的准确性,但经过10 000次左右迭代后收敛,效率低下;多链ERS-TSMH算法在保证溯源精度的同时,在5 000次左右迭代后收敛,效率显著提高且表现出高稳定性和可靠性.展开更多
针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器...针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术。首先,针对不平衡样本数据集利用安全级别合成少数过采样技术(safelevel synthetic minority over-sampling technique,Safe-Level SMOTE)对原始的变压器故障样本集进行了数据扩充,然后利用核主成分分析(kernel principal component analysis,K-PCA)算法对比值化后的油色谱数据进行故障特征优化提取。其次在北方苍鹰优化算法(northern goshawk optimization,NGO)中融合了正余弦和折射反向学习策略,利用测试函数验证该算法的稳定性和利用SCNGO优化算法提高其寻优能力。最后通过实际的对未扩充样本诊断和其他方法诊断进行对比分析,结果证明该方法能够有效地提高变压器故障诊断的性能。展开更多
文摘针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水污染溯源结果的影响,并由此提出了基于等距随机抽样方法(equidistant random sampling)的两阶段多链Metropolis Hastings算法(ERS-TSMH).仿真结果表明,传统的MH算法和TSMH算法在求解时易陷入局部最优值或不收敛的情况,前者接受率在20%左右,后者却达到近50%;多链ERS-MH算法提高了反演的准确性,但经过10 000次左右迭代后收敛,效率低下;多链ERS-TSMH算法在保证溯源精度的同时,在5 000次左右迭代后收敛,效率显著提高且表现出高稳定性和可靠性.