The analysis of combining ability and heterosis is very important in enhancing the yield and oil quality of sunflowers under adverse conditions,and it reveals the potential of the parents and the mechanism of gene act...The analysis of combining ability and heterosis is very important in enhancing the yield and oil quality of sunflowers under adverse conditions,and it reveals the potential of the parents and the mechanism of gene action.In this study,twenty-one hybrids were developed by crossing seven cytoplasmic male sterile(CMS)lines with three restorer lines and evaluated for agronomic and quality traits.Highly significant general combining ability(GCA)and specific combining ability(SCA)effects were observed,confirming the role of both additive and non-additive gene actions.Among the tested crosses,A-42×R-86,A-92×R-86,and A-92×R-114 exhibited the greatest heterotic advantage,with seed yields exceeding 340 kg ha^(−1) over the better parent,oil contents above 19%,and 100-seed weights greater than 27 g.The hybrid A-92×R-114 was particularly notable for its elevated oleic acid level and balanced fatty acid profile,making it a strong candidate for premium oilseed production.In contrast,hybrids like A-20×R-39 exhibited moderate heterosis and less quality superiority.The oleic-to-linoleic acid ratio,a key determinant of oil stability,was strongly controlled by genetic factors.Oil content was largely influenced by additive effects,whereas yield heterosis was predominantly governed by non-additive effects.Overall,A-42×R-86 and A-92×R-114 emerged as the most promising hybrids,combining yield benefits with improved oil quality,and offering practical guidance for parental selection in sunflower breeding programs.展开更多
文摘The analysis of combining ability and heterosis is very important in enhancing the yield and oil quality of sunflowers under adverse conditions,and it reveals the potential of the parents and the mechanism of gene action.In this study,twenty-one hybrids were developed by crossing seven cytoplasmic male sterile(CMS)lines with three restorer lines and evaluated for agronomic and quality traits.Highly significant general combining ability(GCA)and specific combining ability(SCA)effects were observed,confirming the role of both additive and non-additive gene actions.Among the tested crosses,A-42×R-86,A-92×R-86,and A-92×R-114 exhibited the greatest heterotic advantage,with seed yields exceeding 340 kg ha^(−1) over the better parent,oil contents above 19%,and 100-seed weights greater than 27 g.The hybrid A-92×R-114 was particularly notable for its elevated oleic acid level and balanced fatty acid profile,making it a strong candidate for premium oilseed production.In contrast,hybrids like A-20×R-39 exhibited moderate heterosis and less quality superiority.The oleic-to-linoleic acid ratio,a key determinant of oil stability,was strongly controlled by genetic factors.Oil content was largely influenced by additive effects,whereas yield heterosis was predominantly governed by non-additive effects.Overall,A-42×R-86 and A-92×R-114 emerged as the most promising hybrids,combining yield benefits with improved oil quality,and offering practical guidance for parental selection in sunflower breeding programs.