A new adenosine biosensor based on aptamer probe is introduced in this article. An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film. When ad...A new adenosine biosensor based on aptamer probe is introduced in this article. An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film. When adenosine is bound specifically to the aptamer probe, the interface of the biosensor is changed, resulting in the decrement of the peak current. The response current is proportional to the amount of adenosine in sample. The used electrode can be easily regenerated in hot water. The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0x 10^-7-l.0x10^-4 mol/L with a detection limit of 1.0xl0^-8 mol/L. The presented biosensor exhibits a nice specificity towards adenosine. It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.展开更多
The glutathione(GSH)monolayer and complex monolayer of GSH-metallic ion on polycrystalline gold electrode were studied by using K3Fe(CN)6 as the redox probe.As for the GSH monolayer,it was found that the metallic ions...The glutathione(GSH)monolayer and complex monolayer of GSH-metallic ion on polycrystalline gold electrode were studied by using K3Fe(CN)6 as the redox probe.As for the GSH monolayer,it was found that the metallic ions could open the ion-gate in the monolayer dramatically in the order La^(3+)>Pb^(2+)>>Ba^(2+)>Ca^(2+)whereas Zn^(2+)ion closed the ion-gate.The complexes of GSH-metallic ions were capable of self-assembling the different kind of monolayer.All the differences were related to the structural configuration of the anchored GSH molecule,which changed with different metallic ions or pH.展开更多
Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium ...Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.展开更多
基金Supported by the National Natural Science Foundation of China(Nos20675028, 20435010 and 20375012)the Science Commission of Hunan Province, China
文摘A new adenosine biosensor based on aptamer probe is introduced in this article. An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film. When adenosine is bound specifically to the aptamer probe, the interface of the biosensor is changed, resulting in the decrement of the peak current. The response current is proportional to the amount of adenosine in sample. The used electrode can be easily regenerated in hot water. The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0x 10^-7-l.0x10^-4 mol/L with a detection limit of 1.0xl0^-8 mol/L. The presented biosensor exhibits a nice specificity towards adenosine. It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.
文摘The glutathione(GSH)monolayer and complex monolayer of GSH-metallic ion on polycrystalline gold electrode were studied by using K3Fe(CN)6 as the redox probe.As for the GSH monolayer,it was found that the metallic ions could open the ion-gate in the monolayer dramatically in the order La^(3+)>Pb^(2+)>>Ba^(2+)>Ca^(2+)whereas Zn^(2+)ion closed the ion-gate.The complexes of GSH-metallic ions were capable of self-assembling the different kind of monolayer.All the differences were related to the structural configuration of the anchored GSH molecule,which changed with different metallic ions or pH.
基金Project supported by the National Natural Science Foundation of China.
文摘Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.