测试数据自动生成方法是软件测试领域研究的热点。基于遗传算法的启发式搜索算法是一种路径覆盖生成测试数据的方法。文中提出了一种基于自适应随机测试(Adaptive Random Testing,ART)算法更新种群的方法,将ART融入遗传算法,优化选择操...测试数据自动生成方法是软件测试领域研究的热点。基于遗传算法的启发式搜索算法是一种路径覆盖生成测试数据的方法。文中提出了一种基于自适应随机测试(Adaptive Random Testing,ART)算法更新种群的方法,将ART融入遗传算法,优化选择操作,动态更新种群,从而增加种群进化过程中的个体多样性,提高了收敛速度,有效地减少了陷入局部最优。实验结果显示,与传统遗传算法生成测试数据的方法相比,改进的算法明显提高了路径覆盖率,减少了种群平均进化代数。展开更多
In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers f...In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers for large-scale training to produce recommendation results, which may result in the inability to achieve music recommendation in some areas due to substandard hardware conditions. This study evaluates the adaptability of four popular machine learning algorithms (K-means clustering, fuzzy C-means (FCM) clustering, hierarchical clustering, and self-organizing map (SOM)) on low-computing servers. Our comparative analysis highlights that while K-means and FCM are robust in high-performance settings, they underperform in low-power scenarios where SOM excels, delivering fast and reliable recommendations with minimal computational overhead. This research addresses a gap in the literature by providing a detailed comparative analysis of MRS algorithms, offering practical insights for implementing adaptive MRS in technologically diverse environments. We conclude with strategic recommendations for emerging streaming services in resource-constrained settings, emphasizing the need for scalable solutions that balance cost and performance. This study advocates an adaptive selection of recommendation algorithms to manage operational costs effectively and accommodate growth.展开更多
文摘测试数据自动生成方法是软件测试领域研究的热点。基于遗传算法的启发式搜索算法是一种路径覆盖生成测试数据的方法。文中提出了一种基于自适应随机测试(Adaptive Random Testing,ART)算法更新种群的方法,将ART融入遗传算法,优化选择操作,动态更新种群,从而增加种群进化过程中的个体多样性,提高了收敛速度,有效地减少了陷入局部最优。实验结果显示,与传统遗传算法生成测试数据的方法相比,改进的算法明显提高了路径覆盖率,减少了种群平均进化代数。
文摘In the digital music landscape, the accuracy and response speed of music recommendation systems (MRS) are crucial for user experience optimization. Traditional MRS often relies on the use of high-performance servers for large-scale training to produce recommendation results, which may result in the inability to achieve music recommendation in some areas due to substandard hardware conditions. This study evaluates the adaptability of four popular machine learning algorithms (K-means clustering, fuzzy C-means (FCM) clustering, hierarchical clustering, and self-organizing map (SOM)) on low-computing servers. Our comparative analysis highlights that while K-means and FCM are robust in high-performance settings, they underperform in low-power scenarios where SOM excels, delivering fast and reliable recommendations with minimal computational overhead. This research addresses a gap in the literature by providing a detailed comparative analysis of MRS algorithms, offering practical insights for implementing adaptive MRS in technologically diverse environments. We conclude with strategic recommendations for emerging streaming services in resource-constrained settings, emphasizing the need for scalable solutions that balance cost and performance. This study advocates an adaptive selection of recommendation algorithms to manage operational costs effectively and accommodate growth.