期刊文献+
共找到1,285篇文章
< 1 2 65 >
每页显示 20 50 100
oncausal spatial prediction filtering based on an ARMA model 被引量:9
1
作者 Liu Zhipeng Chen Xiaohong Li Jingye 《Applied Geophysics》 SCIE CSCD 2009年第2期122-128,共7页
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu... Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods. 展开更多
关键词 AR model arma model noncasual random noise self-deconvolved projection filtering
在线阅读 下载PDF
Study on Optimality of Two-Stage Estimation with ARMA Model Random Bias 被引量:2
2
作者 Zhou Lu(Department of Mathematics, Beijing National University,100875, P. R. China)Wen Xin( 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第2期39-47,共9页
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final... The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given. 展开更多
关键词 Kalman filter State estimation Optimal filtering arma model Random bias.
在线阅读 下载PDF
ARMA Modelling for Whispered Speech
3
作者 栗学丽 周卫东 《Journal of Measurement Science and Instrumentation》 CAS 2010年第3期300-303,共4页
The Autoregressive Moving Average (ARMA) model for whispered speech is proposed. with normal speech, whispered speech has no fundamental frequency because of the glottis being semi-opened and turbulent flow being cr... The Autoregressive Moving Average (ARMA) model for whispered speech is proposed. with normal speech, whispered speech has no fundamental frequency because of the glottis being semi-opened and turbulent flow being created, and formant shifting exists in the lower frequency region due to the narrowing of the tract in the false vocal fold regions and weak acoustic coupling with the aubglottal system. Analysis shows that the effect of the subglottal system is to introduce additional pole-zero pairs into the vocal tract transfer function. Theoretically, the method based on an ARMA process is superior to that based on an AR process in the spectral analysis of the whispered speech. Two methods, the least squared modified Yule-Walker likelihood estimate (LSMY) algorithm and the Frequency-Domain Steiglitz-Mcbide (FDSM) algorithm, are applied to the ARMA mfldel for the whispered speech. The performance evaluation shows that the ARMA model is much more appropriate for representing the whispered speech than the AR model, and the FDSM algorithm provides a name acorate estimation of the whispered speech spectral envelope than the LSMY algorithm with higher conputational complexity. 展开更多
关键词 arma model AR model whispered speech LSMY
在线阅读 下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
4
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (arma) model feedback linear estimation basis time-varying function spectral estimation
在线阅读 下载PDF
Simulation of the growth ring density of Larix olgensis plantation wood with the ARMA model
5
作者 Yi Liu Minghui Guo 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第2期727-737,共11页
Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and... Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data. 展开更多
关键词 Growth RING DENSITY LARIX olgensis PLANTATION WOOD arma modeling Time series analysis
在线阅读 下载PDF
Analysis and Prediction of Rural Residents’ Living Consumption Growth in Sichuan Province Based on Markov Prediction and ARMA Model
6
作者 LU Xiao-li 《Asian Agricultural Research》 2012年第10期45-48,共4页
I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in th... I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in the future is predicted to largely range from 10% to 20%. Then, in order to improve the prediction accuracy, time variable t is added into the traditional ARMA model for modeling and prediction. The prediction results show that the average relative error rate is 1.56%, and the absolute value of relative error during the period 2006-2009 is less than 0.5%. Finally, I compare the prediction results during the period 2010-2012 by Markov prediction method and ARMA model, respectively, indicating that the two are consistent in terms of growth rate of living consumption, and the prediction results are reliable. The results show that under the similar policies, rural residents' consumer demand in Sichuan Province will continue to grow in the short term, so it is necessary to further expand the consumer market. 展开更多
关键词 RURAL RESIDENTS LIVING CONSUMPTION MARKOV predicti
在线阅读 下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
7
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting arma model ARCH effect volatility clustering
在线阅读 下载PDF
RECURSIVE METH0D FOR ARMA MODEL ESTIMATION (Ⅱ)
8
作者 黄大威 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1989年第4期332-354,共23页
In this paper a new recursive method for ARMA model estimation is given. Same as in [1], theorder's estimator is strongly consistent, and the parameter's estimators defer to CLT and LILunder a natural conditio... In this paper a new recursive method for ARMA model estimation is given. Same as in [1], theorder's estimator is strongly consistent, and the parameter's estimators defer to CLT and LILunder a natural condition. Compared with the previous metheds suggested by Hannan & Kavalieris(1984), Wang Shouren & Chen Zhaoguo (1985) and Franke (1985), this methed has some advantages:the amount of calculat on work is smaller, the minimum-phase property of coeffcient estimators canbe guaranteed,the BAN estimators for MA or AR model can be obtained directly,and the simulationshows that this method is more accurate in estimating the order and parameters. 展开更多
关键词 arma MAT MODE RECURSIVE METH0D FOR arma model ESTIMATION
原文传递
The ARMA model’s pole characteristics of Doppler signals fromthe carotid artery and their classification application
9
作者 CHEN Xi WANG Yuanyuan ZHANG Yu WANG Weiqi (Department of Electronic Engineering, Fudan University Shanghai 200433)Received Jun. 11, 2001 Revised Jul. 4, 2001 《Chinese Journal of Acoustics》 2002年第4期317-324,共8页
In order to diagnose the cerebral infarction, a classification system based on the ARMA model and BP (Back-Propagation) neural network is presented to analyze blood flow Doppler signals from the carotid artery. In thi... In order to diagnose the cerebral infarction, a classification system based on the ARMA model and BP (Back-Propagation) neural network is presented to analyze blood flow Doppler signals from the carotid artery. In this system, an ARMA model is first used to analyze the audio Doppler blood flow signals from the carotid artery. Then several characteristic parameters of the pole's distribution are estimated. After studies of these characteristic parameters' sensitivity to the textcolor cerebral infarction diagnosis, a BP neural network using sensitive parameters is established to classify the normal or abnormal state of the cerebral vessel. With 474 cases used to establish the appropriate neural network, and 52 cases used to test the network, the results show that the correct classification rate of both training and testing are over 94%. Thus this system is useful to diagnose the cerebral infarction. 展开更多
关键词 arma In The arma model s pole characteristics of Doppler signals fromthe carotid artery and their classification application
原文传递
A CONSTRAINED LEAST SQUARES FITTING TECHNIQUE FOR ARMA MODELING
10
作者 SUN Yungong(Institute of Acoustics, Academia Sinica) 《Chinese Journal of Acoustics》 1989年第2期157-162,共6页
Several ARMA modeling approaches are addressed. In these methods only part of a correlation sequence is employed for estimating parameters. It is satisfying, if the given correlation sequence is of real ARMA, since an... Several ARMA modeling approaches are addressed. In these methods only part of a correlation sequence is employed for estimating parameters. It is satisfying, if the given correlation sequence is of real ARMA, since an ARMA process can be completely determined by part of its correlation se -quence. But for the case of a measured correlation sequence the whole sequence may be used to reduce the effect of error on model parameter estimation. In addition, these methods now do not guarantee a nonnegative spectral estimate. In view of the above-mentioned fact, a constrained least squares fitting technique is proposed which utilizes the whole measured correlation sequence and guarantees a nonnegative spectral estimate. 展开更多
关键词 arma A CONSTRAINED LEAST SQUARES FITTING TECHNIQUE FOR arma modelING
原文传递
Chinese speaker-recognition based on ARMA model
11
作者 LIN Baocheng CHEN Yongbin(Dept. of Radio Engineering, Southeast University Nanjing 210096) 《Chinese Journal of Acoustics》 1998年第3期206-212,共7页
A Chinese speaker recognition system, which only use speech material of nasal initials and is text-independent, is presented in this paper. According to the properties of speaker's fixed nasal cavity and stable ph... A Chinese speaker recognition system, which only use speech material of nasal initials and is text-independent, is presented in this paper. According to the properties of speaker's fixed nasal cavity and stable pharynx cavity when Chinese nasal initials is spoken and a few Chinese nasal initials (the total number of them is only 101 which consists of 53 Tn- and 48 n-), the spectrum parameters of zero and pole point coefficients of all Chinese nasal initials can be gotten by using ARMA model. The performance of this system for 20 speakers is as follows' The correct recognition rate (CRR) is 87.92% for each speaker to test all initials, when randomly choosing 2, 3, 4 and 5 initials in each speaker's and then averaging their spectrum to test individual template, the average' CRRs are 91.67%, 95.00%, 96.67% and 99.97% respectively. 展开更多
关键词 arma In Chinese speaker-recognition based on arma model
原文传递
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
12
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 Auto-Regressive and Moving-Average (arma) modeling probability distributions extreme wind speeds
在线阅读 下载PDF
基于ARMA车速预测的智能车交叉口强化学习决策研究 被引量:1
13
作者 喻志成 赵俊鹏 +2 位作者 刘永刚 夏甫根 叶明 《重庆大学学报》 北大核心 2025年第10期68-80,共13页
为解决无信号交叉口的智能车决策控制问题,以双向单车道交叉口下两车合流工况为对象,采用强化学习方法开展研究,建立车辆状态空间到动作空间的映射。针对目前研究中环境车辆车速设置过于简单问题,以实际场景下采集的数据作为环境车辆的... 为解决无信号交叉口的智能车决策控制问题,以双向单车道交叉口下两车合流工况为对象,采用强化学习方法开展研究,建立车辆状态空间到动作空间的映射。针对目前研究中环境车辆车速设置过于简单问题,以实际场景下采集的数据作为环境车辆的轨迹信息构建场景模型。基于自回归滑动平均模型对环境车辆的车速进行预测。结合智能车及预测的环境车辆车速时序信息建立先行让行决策模型计算本车参考车速,引入参考车速构建强化学习的奖励函数加速训练收敛速度。结果表明:所提出的强化学习模型具有较快收敛速度,训练得到的智能体在与不同驾驶风格的环境车辆博弈时能安全通过交叉口,为无信号交叉口智能车安全通行决策控制提供参考依据。 展开更多
关键词 交叉口 自动驾驶 自回归滑动平均模型 强化学习
在线阅读 下载PDF
ARMA-GM combined forewarning model for the quality control
14
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (arma) grey system model (GM) combined forewarning model quality control.
在线阅读 下载PDF
A Time Series Data Mining Based on ARMA and MLFNN Model for Intrusion Detection
15
作者 Tianqi Yang 《通讯和计算机(中英文版)》 2006年第7期16-21,30,共7页
关键词 数据处理 网络技术 arma模型 MLFMN模型
在线阅读 下载PDF
基于ARMA模型的森林蓄积量精确预测研究
16
作者 郜昌建 王海龙 +1 位作者 蓝艺涵 王世红 《浙江农业科学》 2025年第6期1526-1530,共5页
森林蓄积量作为评估森林资源丰度、生态系统健康及碳汇能力的重要指标,其精准预测对于林业可持续经营与碳中和路径制定具有重要意义。本研究综合对比了自回归移动平均(ARMA)模型结合相关最小二乘算法(ARMAP)、普通最小二乘算法(ARMAO)... 森林蓄积量作为评估森林资源丰度、生态系统健康及碳汇能力的重要指标,其精准预测对于林业可持续经营与碳中和路径制定具有重要意义。本研究综合对比了自回归移动平均(ARMA)模型结合相关最小二乘算法(ARMAP)、普通最小二乘算法(ARMAO)、灰色系统理论(GST)及BP神经网络(BPNN)4种方法在森林蓄积量预测中的性能。以福州市永泰县城峰镇1986—1999年林地面积与森林蓄积量数据为基础构建模型,并采用1998、1999年数据进行预测验证。结果表明,ARMAP模型通过有效滤除有色噪声,实现了最高预测精度,其残差方差和预测误差均显著低于其他模型。进一步利用该模型对浙江省2020年森林蓄积量进行了预测验证,结果显示,模型表现出较强的泛化能力。研究表明,ARMAP模型能够在复杂干扰情境下实现高精度、高效率的森林蓄积量预测,为森林资源管理与碳汇评估提供了方法支持。 展开更多
关键词 森林蓄积量 arma模型 相关最小二乘算法
在线阅读 下载PDF
基于EM算法的ARMA(p,q)测量误差模型的参数估计
17
作者 金阳阳 沈逸珺 +1 位作者 郑斌斌 张慧增 《杭州师范大学学报(自然科学版)》 2025年第3期312-321,共10页
利用EM算法给出了ARMA(p,q)测量误差模型的参数估计.在实施EM算法M步骤时,为得到服从高维正态分布的隐变量的一阶、二阶矩,利用Toeplitz矩阵的求逆算法,并通过矩阵分块给出了求解高阶非负定对称稀疏矩阵的逆矩阵的迭代算法,从而得到了E... 利用EM算法给出了ARMA(p,q)测量误差模型的参数估计.在实施EM算法M步骤时,为得到服从高维正态分布的隐变量的一阶、二阶矩,利用Toeplitz矩阵的求逆算法,并通过矩阵分块给出了求解高阶非负定对称稀疏矩阵的逆矩阵的迭代算法,从而得到了EM算法的最优参数估计.对ARMA(2,2)测量误差模型的数值模拟结果表明,EM算法在模型估计方面具备良好的性能. 展开更多
关键词 EM算法 arma(p q)测量误差模型 TOEPLITZ矩阵
在线阅读 下载PDF
基于LSSVM-ARMA模型的基坑变形时间序列预测 被引量:37
18
作者 曹净 丁文云 +2 位作者 赵党书 宋志刚 刘海明 《岩土力学》 EI CAS CSCD 北大核心 2014年第S2期579-586,共8页
如何准确预测和控制基坑变形是基坑工程的一个难点,提出了一种基于小波变换、粒子群优化的最小二乘支持向量机(PSO-LSSVM)和自回归移动平均模型(ARMA)的基坑变形时间序列预测方法。首先,利用小波变换将基坑变形时间序列分解和重构为2个... 如何准确预测和控制基坑变形是基坑工程的一个难点,提出了一种基于小波变换、粒子群优化的最小二乘支持向量机(PSO-LSSVM)和自回归移动平均模型(ARMA)的基坑变形时间序列预测方法。首先,利用小波变换将基坑变形时间序列分解和重构为2个子序列——趋势时间序列和随机时间序列,在该基础上,采用PSO-LSSVM模型与ARMA模型分别预测趋势时间序列与随机时间序列未来值,将2个子序列的预测值求和作为最终预测结果。最后,将该方法应用于昆明某基坑工程的深层水平位移预测,不断地利用前期工况的最新实测数据建模,对后期工况未来变形量进行滚动预测,获得了令人满意的结果。 展开更多
关键词 基坑变形 时间序列预测 小波变换 PSO-LSSVM arma模型
原文传递
基于遗传算法和ARMA模型的航空发电机寿命预测 被引量:24
19
作者 崔建国 赵云龙 +2 位作者 董世良 张红梅 陈希成 《航空学报》 EI CAS CSCD 北大核心 2011年第8期1506-1511,共6页
针对航空发电机剩余使用寿命难以准确预测的问题,提出一种基于遗传算法(GA)优化的自回归与移动平均(ARMA)模型。运用航空发电机寿命专用试验平台,对某型航空发电机寿命进行长期试验,获取该航空发电机寿命相关数据。深入分析寿命试验数据... 针对航空发电机剩余使用寿命难以准确预测的问题,提出一种基于遗传算法(GA)优化的自回归与移动平均(ARMA)模型。运用航空发电机寿命专用试验平台,对某型航空发电机寿命进行长期试验,获取该航空发电机寿命相关数据。深入分析寿命试验数据,并对其建立ARMA模型。在此基础上,采用遗传算法对ARMA模型的阶数进行优化,分别采用ARMA模型与经遗传算法优化后的ARMA模型对航空发电机的使用寿命进行预测研究。结果表明,优化前后两种ARMA模型均可对航空发电机的使用寿命实现预测效能。优化前ARMA模型对航空发电机寿命预测的平均相对误差为4.33%;而经遗传算法优化后,ARMA模型预测的平均相对误差仅为2.26%,能更准确预测航空发电机的使用寿命,具有很好的工程应用价值。 展开更多
关键词 遗传算法 arma模型 航空发电机 寿命预测 注油压力
原文传递
基于MM-ARMA算法的次同步振荡模态参数辨识 被引量:21
20
作者 董飞飞 刘涤尘 +3 位作者 涂炼 宫璇 赵一婕 宋春丽 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1252-1257,共6页
传统电力系统次同步振荡的辨识方法存在对噪声敏感、辨识精度不高的局限性。为此,提出了一种基于数学形态学自回归移动平均(MM-ARMA)算法的辨识方法,实现了在有噪声干扰下对次同步振荡模态的准确辨识。该方法利用形态滤波器可以有效抑... 传统电力系统次同步振荡的辨识方法存在对噪声敏感、辨识精度不高的局限性。为此,提出了一种基于数学形态学自回归移动平均(MM-ARMA)算法的辨识方法,实现了在有噪声干扰下对次同步振荡模态的准确辨识。该方法利用形态滤波器可以有效抑制噪声的特性对次同步振荡信号进行消噪处理,保留信号的主要特征信息;对消噪后的信号建立基于加权递推最小二乘法参数估计的ARMA模型,根据估计的模型参数计算次同步振荡模态参数,完成次同步振荡模态辨识。与传统的Prony算法和自回归移动平均(ARMA)算法辨识结果进行的对比分析结果表明,所提次同步振荡模态辨识方法能快速、准确地辨识出模态参数,且具有较强的抗噪能力。 展开更多
关键词 电力系统 次同步振荡 模态辨识 数学形态滤波 arma模型 加权递推最小二乘法
原文传递
上一页 1 2 65 下一页 到第
使用帮助 返回顶部