Type 2 diabetes mellitus(T2 DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent ...Type 2 diabetes mellitus(T2 DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2 DM and found that rs3743121, located 1 kb downstream of AQR,was a novel susceptibility SNP associated with T2 DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2 DM models. The knockdown of AQR in HepG2 facilitated the glucose uptake, decreased the expression level of PCK2,increased the phosphorylation of GSK-3β, and restored the insulin sensitivity. Furthermore, the suppression of AQR inhibited the mTOR pathway and the protein ubiquitination process. Our study suggests that AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism.展开更多
Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better...Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better spatial resolution than previously available. They are analysed with emphasis on the de-projection in space of the effective emissivity and flux of matter using as input a prescribed configuration of the velocity field, assumed to be radial. The data are found to display an intrinsic axisymmetry with respect to an axis making a small angle with respect to the line of sight. A broad range of wind configurations, from prolate(bipolar) to oblate(equatorial) has been studied and found to be accompanied by significant equatorial emission. Qualitatively, the effective emissivity is enhanced near the equator to produce the central narrow component observed in the Doppler velocity spectra and its dependence on star latitude generally follows that of the wind velocity with the exception of an omni-present depression near the poles. In particular, large equatorial expansion velocities produce a flared disc or a ring of effective emissivity and mass loss. The effect on the determination of the orientation of the star axis of radial velocity gradients, and possibly competing rotation and expansion in the equatorial disc, is discussed. In general,the flux of matter is found to reach a broad maximum at distances of the order of 500 AU from the star.Arguments are given that may be used to favour one wind velocity distribution over another. As a result of the improved quality of the data, a deeper understanding of the constraints imposed on morphology and kinematics has been obtained.展开更多
Data representing 864 times of light maxima of the high-amplitude δ Scuti star CY Aqr were col- lected from the literature, based on which, long-term period changes of the variable star were investigated. A revised p...Data representing 864 times of light maxima of the high-amplitude δ Scuti star CY Aqr were col- lected from the literature, based on which, long-term period changes of the variable star were investigated. A revised period and new ephemerides were given for the pulsating star. Remarkable cyclic variations were found in the O - C residuals which can be attributed to the light-time effects due to probable unseen com- ponents of the object. By using Kopal's method, the orbital parameters of the supposed component stars were derived. The solution suggests that CY Aqr is very probably in a triple system orbited eccentrically by two low-mass companions with periods of 54.2 and 47.3 yr. The lower limits on masses were estimated as 0.04 Me and 0.02 Me, respectively, for the two hidden companions.展开更多
The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and...The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.展开更多
基金supported by the National Basic Research Program of the Chinese Ministry of Science and Technology (2013CB530700)Key Programs from the National Natural Science Foundation of China(Nos. 81630034 and 81130003)
文摘Type 2 diabetes mellitus(T2 DM) is a common metabolic disease influenced by both genetic and environmental factors. In this study, we performed an in-house genotyping and meta-analysis study using three independent GWAS datasets of T2 DM and found that rs3743121, located 1 kb downstream of AQR,was a novel susceptibility SNP associated with T2 DM. The risk allele C of rs3743121 was correlated with the increased expression of AQR in white blood cells, similar to that observed in T2 DM models. The knockdown of AQR in HepG2 facilitated the glucose uptake, decreased the expression level of PCK2,increased the phosphorylation of GSK-3β, and restored the insulin sensitivity. Furthermore, the suppression of AQR inhibited the mTOR pathway and the protein ubiquitination process. Our study suggests that AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism.
基金supported by the Programme National "Physique et Chimie du MilieuInterstellaire" (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNESfinancial support from VNSC/VAST+4 种基金the NAFOSTED funding agency under grant number 103.99–2015.39the World Laboratorythe Odon Vallet Foundationthe Rencontres du Viet Namfunded by Graduate University of Science and Technology undergrant number GUST.STS.DT 2017-VL01
文摘Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better spatial resolution than previously available. They are analysed with emphasis on the de-projection in space of the effective emissivity and flux of matter using as input a prescribed configuration of the velocity field, assumed to be radial. The data are found to display an intrinsic axisymmetry with respect to an axis making a small angle with respect to the line of sight. A broad range of wind configurations, from prolate(bipolar) to oblate(equatorial) has been studied and found to be accompanied by significant equatorial emission. Qualitatively, the effective emissivity is enhanced near the equator to produce the central narrow component observed in the Doppler velocity spectra and its dependence on star latitude generally follows that of the wind velocity with the exception of an omni-present depression near the poles. In particular, large equatorial expansion velocities produce a flared disc or a ring of effective emissivity and mass loss. The effect on the determination of the orientation of the star axis of radial velocity gradients, and possibly competing rotation and expansion in the equatorial disc, is discussed. In general,the flux of matter is found to reach a broad maximum at distances of the order of 500 AU from the star.Arguments are given that may be used to favour one wind velocity distribution over another. As a result of the improved quality of the data, a deeper understanding of the constraints imposed on morphology and kinematics has been obtained.
基金supported by the National Natural Science Foundation of China (Nos.U1331121,11373037 and U1231202)
文摘Data representing 864 times of light maxima of the high-amplitude δ Scuti star CY Aqr were col- lected from the literature, based on which, long-term period changes of the variable star were investigated. A revised period and new ephemerides were given for the pulsating star. Remarkable cyclic variations were found in the O - C residuals which can be attributed to the light-time effects due to probable unseen com- ponents of the object. By using Kopal's method, the orbital parameters of the supposed component stars were derived. The solution suggests that CY Aqr is very probably in a triple system orbited eccentrically by two low-mass companions with periods of 54.2 and 47.3 yr. The lower limits on masses were estimated as 0.04 Me and 0.02 Me, respectively, for the two hidden companions.
基金funded by the earmarked fund for China Agriculture Research System (CARS-34-07)the National Department of Public Benefit Research Foundation, China (201303057)
文摘The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.