Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the...Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability.展开更多
The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorith...The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorithm to optimize the coverage of nodes and designed an energy-efficient node coverage optimization method.In the coverage optimization,the coverage rate and the number of working nodes are considered comprehensively,and the fitness value calculation is improved.The experimental results reveal that the modified ABC algorithm has better coverage optimization performance than the original ABC algorithm,genetic algorithm(GA),and particle swarm optimization(PSO)algorithm.展开更多
针对由于人工蜂群算法(Artificial Bee Colony algorithm,ABC)采用直接映射概率选择食物源而引起收敛速度慢、陷入局部最优等问题,提出一种混合排名映射概率和混沌搜索的人工蜂群算法((Artificial Bee Colony algorithm based on Hybrid...针对由于人工蜂群算法(Artificial Bee Colony algorithm,ABC)采用直接映射概率选择食物源而引起收敛速度慢、陷入局部最优等问题,提出一种混合排名映射概率和混沌搜索的人工蜂群算法((Artificial Bee Colony algorithm based on Hybrid rank mapping probability and Chaotic search,ABC-HC))。首先,利用目标函数值的排名来获取选择食物源的排名映射概率,并提出计算排名映射概率的两种方法;然后,在观察蜂阶段,融合这两种计算概率的方法,即不同的搜索阶段采用不同的排名映射方法计算食物源选择概率,构造基于混合排名映射概率的人工蜂群算法,以便能够维持种群的多样性避免陷于局部最优;最后,在侦查蜂阶段,使用混沌搜索替代随机搜索以便进一步提高收敛速度,最终获得较好的全局最优解。对10个标准测试函数进行仿真,结果表明,ABC-HC算法不仅提高了收敛速度,而且更能跳出局部最优,有效地找到全局最优解,优于标准的ABC算法和进化算法。展开更多
文摘Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability.
基金supported by the National Nature Science Foundation of China (Grant No.61862038)Gansu Province Science and Technology Program-Innovation Fund for Small and Medium-sized Enterprises (21CX6JA150)+1 种基金the Lanzhou Talent Innovation and Entrepreneurship Technology Plan Project (2021-RC-40)the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘The severe conditions of cold and arid areas seriously affect the progress of data collection and analysis for field observation instruments.Therefore,this study adopted the modified artificial bee colony(ABC)algorithm to optimize the coverage of nodes and designed an energy-efficient node coverage optimization method.In the coverage optimization,the coverage rate and the number of working nodes are considered comprehensively,and the fitness value calculation is improved.The experimental results reveal that the modified ABC algorithm has better coverage optimization performance than the original ABC algorithm,genetic algorithm(GA),and particle swarm optimization(PSO)algorithm.
文摘针对由于人工蜂群算法(Artificial Bee Colony algorithm,ABC)采用直接映射概率选择食物源而引起收敛速度慢、陷入局部最优等问题,提出一种混合排名映射概率和混沌搜索的人工蜂群算法((Artificial Bee Colony algorithm based on Hybrid rank mapping probability and Chaotic search,ABC-HC))。首先,利用目标函数值的排名来获取选择食物源的排名映射概率,并提出计算排名映射概率的两种方法;然后,在观察蜂阶段,融合这两种计算概率的方法,即不同的搜索阶段采用不同的排名映射方法计算食物源选择概率,构造基于混合排名映射概率的人工蜂群算法,以便能够维持种群的多样性避免陷于局部最优;最后,在侦查蜂阶段,使用混沌搜索替代随机搜索以便进一步提高收敛速度,最终获得较好的全局最优解。对10个标准测试函数进行仿真,结果表明,ABC-HC算法不仅提高了收敛速度,而且更能跳出局部最优,有效地找到全局最优解,优于标准的ABC算法和进化算法。