为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260...为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260全秸秆茬地洁区旋耕智能施肥播种机和3ZF-4(200)中耕追肥机,设置7种施肥模式(30 cm+15 cm宽窄行种植):以尿素4次分施(N 240 kg hm^(-2),基肥∶分蘖肥∶拔节肥∶孕穗肥=5∶1∶2∶2,窄行基施,追肥全田撒施)为对照(CK);减氮15%(N 204 kg hm^(-2))条件下设置6种处理:M_(1)(100%SRF窄行基施);M_(2)(60%SRF窄行基施+40%U拔节期窄行撒施);M_(3)(60%SRF窄行基施+40%U返青期宽行条施);M_(4)(60%SRF窄行基施+40%SRF返青期窄行撒施);M_(5)(60%SRF窄行基施+40%SRF返青期宽行条施);M_(4+5)(60%SRF窄行基施+20%SRF返青期宽行条施+20%SRF返青期窄行撒施)。研究比较不同施肥模式对小麦产量效益、根系形态生理、氮素利用效率及N_(2)O排放的影响。结果表明,与CK相比,M_(2)~M_(5)处理提高了小麦产量(4.0%~19.0%)和经济效益(13.7%~35.7%),其中M_(4)和M_(5)处理表现最优,分别增产14.1%和19.0%,经济效益提升34.5%和35.7%。这些处理明显改善了根系特性(根干重密度增加9.7%~111.8%,根系活力和氧化力分别提高6.8%~52.0%和4.2%~44.2%),降低N_(2)O累积排放量22.6%~34.5%,提高0~20 cm土层硝态氮含量11.2%~40.0%。在氮素利用方面,M_(2)~M_(5)处理均提高了籽粒氮素积累量、花后氮素积累量及其对籽粒氮素的贡献率,氮肥利用效率指标(包括偏生产力、农学效率和表观利用率)分别显著提升了22.4%~40.0%、29.7%~74.3%和9.41~18.77个百分点。值得注意的是,M_(4)和M_(5)处理表现出最优的综合效益:N_(2)O累积排放量降幅最大(分别达27.0%和34.5%),氮肥表观利用率2季均维持在43.0%以上(均值分别为43.5%和46.8%),同时在生育后期保持较高的根系活性和耕层无机氮含量。相比之下,M_(1)处理虽然实现了最大的N_(2)O减排效果(降幅35.9%),但导致减产10.4%和经济效益下降10.8%,且氮肥利用效率呈现不稳定的年际变化特征。而优化处理M_(4+5)进一步改善了根系形态生理特性,并提高氮肥表观利用率和籽粒氮素积累量。综上,减氮15%条件下(N 204 kg hm^(-2)),缓混肥2次施用处理(M_(4)和M_(5))能实现产量、经济效益、氮肥利用效率和N_(2)O减排的协同提高,并以追肥深施处理(M_(5))效应更强。本研究为稻茬小麦缓释肥减氮优化高效应用提供重要理论依据。展开更多
Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced eff...Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).展开更多
Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICES...Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICESat-2, many elevation observations can be used to derive elevation changes. However, the large amount of multitemporal data may include anomalous data points, increasing the uncertainty of the results. In this work, we improved the traditional repeat track method by introducing the Institute of Geodesy and Geophysics Ⅲ(IGGⅢ) method to obtain high-accuracy estimates of elevation change. The improved method was applied to analyze elevation changes along the transect from Zhongshan Station to Dome A in East Antarctica via ICESat-2 satellite altimetry data. The results show that the improved and traditional methods yield consistent numerical and spatial elevation change distributions. The elevation change calculated via the traditional method is 0.033 ± 0.131 m/yr, whereas the elevation change estimated via the IGGⅢ robust estimation method is 0.033 ± 0.109 m/yr from March 2019 to December 2021.In terms of spatial distribution, elevation changes in inland areas remain close to equilibrium, whereas regions with steeper ice sheet margins exhibit positive accumulation trends in elevation changes. The improved method reduces the standard error of the adjustment function from 0.975 to 0.691 m/yr. The improvement is particularly remarkable in the area between 72°S and 77°S. The results demonstrate that the IGGⅢ method effectively reduces errors caused by the inclusion of anomalous data and maintains the high data utilization rate of repeat-orbit methods.展开更多
The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase fiel...The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase field method was utilized to simulate the impact of displacement velocity,the water-gas viscosity ratio,and the density ratio on the flow behavior of two-phase fluids in porous media.The effectiveness of displacement was evaluated by analyzing CO_(2)saturation levels.The results indicate that the saturation of CO_(2)in porous media increased as the displacement velocity increased.When the displacement velocity exceeded 0.01 m/s,there was a corresponding increase in CO_(2)saturation.Conversely,when the displacement velocity was below this threshold,the impact on CO_(2)saturation was minimal.An“inflection point,”M3,was present in the viscosity ratio.When the viscosity of CO_(2)is less than 8.937×10^(-5)Pa·s(viscosity ratio below M3),variations in the viscosity of CO_(2)had little impact on its saturation.Conversely,when the viscosity of CO_(2)exceeded 8.937×10^(-5)Pa·s(viscosity ratio greater than M3),saturation increased with an increase in the viscosity ratio.In terms of the density ratio,the saturation of CO_(2)increased monotonically with an increase in the density ratio.Similarly,increasing density ratios resulted in a monotonic increase in CO_(2)saturation,though this trend was less pronounced in numerical simulations.Analysis results of displacement within dead-end pores using pressure and velocity diagrams reveal eddy currents as contributing factors.Finally,the impact of pore throat structure on the formation of dominant channels was examined.展开更多
Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the know...Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.展开更多
A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respec...A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method.展开更多
文摘为探究稻茬小麦深施肥“一基一追”机艺融合技术的增产增效减排机制,2021—2024年在长江下游南通稻茬麦区开展大田试验。试验采用缓释掺混肥料(SRF,N∶P_(2)O_(5)∶K_(2)O=26∶12∶12)和普通尿素(U,46%N),结合自主研发的2BFGK-12(6)260全秸秆茬地洁区旋耕智能施肥播种机和3ZF-4(200)中耕追肥机,设置7种施肥模式(30 cm+15 cm宽窄行种植):以尿素4次分施(N 240 kg hm^(-2),基肥∶分蘖肥∶拔节肥∶孕穗肥=5∶1∶2∶2,窄行基施,追肥全田撒施)为对照(CK);减氮15%(N 204 kg hm^(-2))条件下设置6种处理:M_(1)(100%SRF窄行基施);M_(2)(60%SRF窄行基施+40%U拔节期窄行撒施);M_(3)(60%SRF窄行基施+40%U返青期宽行条施);M_(4)(60%SRF窄行基施+40%SRF返青期窄行撒施);M_(5)(60%SRF窄行基施+40%SRF返青期宽行条施);M_(4+5)(60%SRF窄行基施+20%SRF返青期宽行条施+20%SRF返青期窄行撒施)。研究比较不同施肥模式对小麦产量效益、根系形态生理、氮素利用效率及N_(2)O排放的影响。结果表明,与CK相比,M_(2)~M_(5)处理提高了小麦产量(4.0%~19.0%)和经济效益(13.7%~35.7%),其中M_(4)和M_(5)处理表现最优,分别增产14.1%和19.0%,经济效益提升34.5%和35.7%。这些处理明显改善了根系特性(根干重密度增加9.7%~111.8%,根系活力和氧化力分别提高6.8%~52.0%和4.2%~44.2%),降低N_(2)O累积排放量22.6%~34.5%,提高0~20 cm土层硝态氮含量11.2%~40.0%。在氮素利用方面,M_(2)~M_(5)处理均提高了籽粒氮素积累量、花后氮素积累量及其对籽粒氮素的贡献率,氮肥利用效率指标(包括偏生产力、农学效率和表观利用率)分别显著提升了22.4%~40.0%、29.7%~74.3%和9.41~18.77个百分点。值得注意的是,M_(4)和M_(5)处理表现出最优的综合效益:N_(2)O累积排放量降幅最大(分别达27.0%和34.5%),氮肥表观利用率2季均维持在43.0%以上(均值分别为43.5%和46.8%),同时在生育后期保持较高的根系活性和耕层无机氮含量。相比之下,M_(1)处理虽然实现了最大的N_(2)O减排效果(降幅35.9%),但导致减产10.4%和经济效益下降10.8%,且氮肥利用效率呈现不稳定的年际变化特征。而优化处理M_(4+5)进一步改善了根系形态生理特性,并提高氮肥表观利用率和籽粒氮素积累量。综上,减氮15%条件下(N 204 kg hm^(-2)),缓混肥2次施用处理(M_(4)和M_(5))能实现产量、经济效益、氮肥利用效率和N_(2)O减排的协同提高,并以追肥深施处理(M_(5))效应更强。本研究为稻茬小麦缓释肥减氮优化高效应用提供重要理论依据。
文摘Nano-scale CuF_(2) with superior electrochemical activity was successfully prepared by a mixed solvent co-precipitation method.The SEM and TEM analyses demonstrated that the methanol concentration had a pronounced effect on both the particle size and the extent of agglomeration.With the increase in methanol content,the particle size and agglomeration of CuF_(2) decreased first and then increased.When the volume ratio of methanol to deionized water was 1:1,the CuF_(2) particles exhibited the smallest size and the lowest degree of agglomeration.CuF_(2) synthesized with 50%methanol exhibited superior electrochemical performances with a voltage plateau above 3 V and a 1st discharge capacity of 525.8 mAh·g^(-1) at 0.01 C due to the synergistic influence of the particle size and dispersion.The analysis results using electrochemical impedance spectroscopy(EIS)and constant current intermittent titration technique(GITT)affirmed the addition of methanol was beneficial for promoting Li+diffusion and accelerating electrochemical reaction kinetics of CuF_(2).
基金supported by the National Key Research and Development Program of China under grant number 2023YFC2809103the Fundamental Research Funds for the Central Universities under grant numbers 2042022kf1204, 2042022kf1069, 2042023gf0012, 2042022dx0001+1 种基金the Hubei Provincial Natural Science Foundation of China under grant number 2022CFB081the State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology under grant number SKLGED2023-2-6
文摘Elevation change monitoring of the Antarctic ice sheet has been a key issue in global change research.Satellite altimetry has been proven to be effective in detecting ice sheet variations. With the development of ICESat-2, many elevation observations can be used to derive elevation changes. However, the large amount of multitemporal data may include anomalous data points, increasing the uncertainty of the results. In this work, we improved the traditional repeat track method by introducing the Institute of Geodesy and Geophysics Ⅲ(IGGⅢ) method to obtain high-accuracy estimates of elevation change. The improved method was applied to analyze elevation changes along the transect from Zhongshan Station to Dome A in East Antarctica via ICESat-2 satellite altimetry data. The results show that the improved and traditional methods yield consistent numerical and spatial elevation change distributions. The elevation change calculated via the traditional method is 0.033 ± 0.131 m/yr, whereas the elevation change estimated via the IGGⅢ robust estimation method is 0.033 ± 0.109 m/yr from March 2019 to December 2021.In terms of spatial distribution, elevation changes in inland areas remain close to equilibrium, whereas regions with steeper ice sheet margins exhibit positive accumulation trends in elevation changes. The improved method reduces the standard error of the adjustment function from 0.975 to 0.691 m/yr. The improvement is particularly remarkable in the area between 72°S and 77°S. The results demonstrate that the IGGⅢ method effectively reduces errors caused by the inclusion of anomalous data and maintains the high data utilization rate of repeat-orbit methods.
基金National Science Foundation of China,Grant/Award Number:5227090113Shenzhen Science and Technology Program,Grant/Award Numbers:KCXFZ20230731093901003,KCXFZ20211020163816023The Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone,Grant/Award Number:HZQB-KCZYB-2020083。
文摘The two-phase flow in porous media is affected by multiple factors.In the present study,a two-dimensional numerical model of porous media was developed using the actual pore structure of the core sample.The phase field method was utilized to simulate the impact of displacement velocity,the water-gas viscosity ratio,and the density ratio on the flow behavior of two-phase fluids in porous media.The effectiveness of displacement was evaluated by analyzing CO_(2)saturation levels.The results indicate that the saturation of CO_(2)in porous media increased as the displacement velocity increased.When the displacement velocity exceeded 0.01 m/s,there was a corresponding increase in CO_(2)saturation.Conversely,when the displacement velocity was below this threshold,the impact on CO_(2)saturation was minimal.An“inflection point,”M3,was present in the viscosity ratio.When the viscosity of CO_(2)is less than 8.937×10^(-5)Pa·s(viscosity ratio below M3),variations in the viscosity of CO_(2)had little impact on its saturation.Conversely,when the viscosity of CO_(2)exceeded 8.937×10^(-5)Pa·s(viscosity ratio greater than M3),saturation increased with an increase in the viscosity ratio.In terms of the density ratio,the saturation of CO_(2)increased monotonically with an increase in the density ratio.Similarly,increasing density ratios resulted in a monotonic increase in CO_(2)saturation,though this trend was less pronounced in numerical simulations.Analysis results of displacement within dead-end pores using pressure and velocity diagrams reveal eddy currents as contributing factors.Finally,the impact of pore throat structure on the formation of dominant channels was examined.
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2145).
文摘Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.
基金supported by the National Key Research and Development Program of China(2016YFC0204902)
文摘A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method.