期刊文献+
共找到11,439篇文章
< 1 2 250 >
每页显示 20 50 100
An efficient parallel algorithm for shortest pathsin planar layered digraphs 被引量:1
1
作者 MISHRAP.K. 《Journal of Zhejiang University Science》 CSCD 2004年第5期518-527,共10页
This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is base... This paper presents an efficient parallel algorithm for the shortest path problem in planar layered digraphs that runs in O(log^3n) time with n processors. The algorithms uses a divide and conquer approach and is based on the novel idea of a one-way separator, which has the property that any directed path can be crossed only once. 展开更多
关键词 Parallel algorithms shortest paths Planar layered digraphs
在线阅读 下载PDF
An Evolutionary Algorithm Coupled to an Outranking Method for the Multicriteria Shortest Paths Problem
2
作者 Frédéric Guidana Gazawa   +1 位作者 Kolyang Irépran Damakoa 《American Journal of Operations Research》 2019年第3期114-128,共15页
In this article, we are interested in solving a combinatorial optimization problem, the shortest path problem in a multi-attribute graph, by the out-ranking methods. A multi-attribute graph has simultaneously qualitat... In this article, we are interested in solving a combinatorial optimization problem, the shortest path problem in a multi-attribute graph, by the out-ranking methods. A multi-attribute graph has simultaneously qualitative and quantitative criteria. This situation gives rise to incomparable paths thus forming the Pareto front. Outranking methods in Multi-criteria Decision Making (MCDM) are the only methods that can take into account this situation (incomparability of actions). After presenting the categories of Multi-criteria Decision Making (MCDM) and the difficulties related to the problems of the shortest paths, we propose an evolutionary algorithm based on the outranking methods to solve the problem of finding “best” paths in a multi-attribute graph with non-additive criteria. Our approach is based on the exploration of induced subgraphs of the outranking graph. Properties have been established to serve as algorithmic basis. Numerical experiments have been carried out and the results presented in this article. 展开更多
关键词 MULTI-CRITERIA DECISION Making EVOLUTIONARY algorithm shortest path Outranking Method Induced SUBGRAPHS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
3
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
A genetic algorithm for the pareto optimal solution set of multi-objective shortest path problem 被引量:2
4
作者 胡仕成 徐晓飞 战德臣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期721-726,共6页
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ... Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time. 展开更多
关键词 shortest path multi-objective optimization tournament selection pareto optimum genetic algorithm
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
5
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot path planning Improved A^(*)algorithm
在线阅读 下载PDF
EZDCP:A new static task scheduling algorithm with edge-zeroing based on dynamic critical paths 被引量:1
6
作者 陈志刚 华强胜 《Journal of Central South University of Technology》 2003年第2期140-144,共5页
A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; s... A new static task scheduling algorithm named edge-zeroing based on dynamic critical paths is proposed. The main ideas of the algorithm are as follows: firstly suppose that all of the tasks are in different clusters; secondly, select one of the critical paths of the partially clustered directed acyclic graph; thirdly, try to zero one of graph communication edges; fourthly, repeat above three processes until all edges are zeroed; finally, check the generated clusters to see if some of them can be further merged without increasing the parallel time. Comparisons of the previous algorithms with edge-zeroing based on dynamic critical paths show that the new algorithm has not only a low complexity but also a desired performance comparable or even better on average to much higher complexity heuristic algorithms. 展开更多
关键词 EZDCP directed ACYCLIC graph DYNAMIC critical path TASK scheduling algorithm
在线阅读 下载PDF
Dynamic Shortest Path Algorithm in Stochastic Traffic Networks Using PSO Based on Fluid Neural Network 被引量:1
7
作者 Yanfang Deng Hengqing Tong 《Journal of Intelligent Learning Systems and Applications》 2011年第1期11-16,共6页
The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based e... The shortest path planning issure is critical for dynamic traffic assignment and route guidance in intelligent transportation systems. In this paper, a Particle Swarm Optimization (PSO) algorithm with priority-based encoding scheme based on fluid neural network (FNN) to search for the shortest path in stochastic traffic networks is introduced. The proposed algorithm overcomes the weight coefficient symmetry restrictions of the traditional FNN and disadvantage of easily getting into a local optimum for PSO. Simulation experiments have been carried out on different traffic network topologies consisting of 15-65 nodes and the results showed that the proposed approach can find the optimal path and closer sub-optimal paths with good success ratio. At the same time, the algorithms greatly improve the convergence efficiency of fluid neuron network. 展开更多
关键词 Particle SWARM Optimization FLUID NEURON Network shortest path TRAFFIC Networks
在线阅读 下载PDF
An Algorithm to Find K Shortest Path 被引量:1
8
作者 Gangming Sun Pin Wang 《International English Education Research》 2014年第10期54-57,共4页
In this figure, it finds a vertex to another vertex k shortest path algorithm. Provided there are n vertices and edges in the diagram. If the path loops, the time complexity of the algorithm is allowed O(w + n log 2... In this figure, it finds a vertex to another vertex k shortest path algorithm. Provided there are n vertices and edges in the diagram. If the path loops, the time complexity of the algorithm is allowed O(w + n log 2 n + kw log 2 k). If the request path does not contain the loop, the time complexity of the algorithm O(kn(w + n log2 n)+ kw log2 k). The algorithm utilizes a simple extension of the Dijkstra algorithm determined the end of the length of the shortest path to the other vertices, and then, based on these data, branch and bound method to identify the required path. Experimental results show that the actual running time has relations with the structure of FIG. 展开更多
关键词 Branch and Bound shortest path Dijkstra algorithm Fibonacei Heap
在线阅读 下载PDF
Locating acoustic emission sources in pseudo-triaxial experiments with the shortest path and orthogonal constraint
9
作者 Yichao Rui Yuanyuan Pu +5 位作者 Jie Chen Cunjin Zhu Sheng Zhang Jiongkun Chen Zelin Zhou Wenzhong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5453-5464,共12页
Acoustic waves in the pseudo-triaxial experiment system experience refraction phenomena.The conventional assumption that acoustic waves propagate along a straight line in traditional methods can lead to significant er... Acoustic waves in the pseudo-triaxial experiment system experience refraction phenomena.The conventional assumption that acoustic waves propagate along a straight line in traditional methods can lead to significant errors in localization results.To the end,this paper presents a method for locating acoustic emission(AE)sources in pseudo-triaxial experiments using shortest paths and orthogonal constraints.The approach consists of three main steps:(1)establishing control equations for refraction paths from AE sources to sensor locations;(2)calculating refraction point locations using the shortest travel principle and orthogonal constraints;(3)determining source coordinates using Taylor's first-order expansion.The results from laboratory AE experiments demonstrate that the average localization accuracy of the new method is only 6.5 mm,which is 66%more precise than the accuracy(19.4 mm)of the traditional method.Furthermore,simulation results indicate that the new method is not affected by the refraction ratio of the media and maintains the highest positioning accuracy across various arrival and velocity errors. 展开更多
关键词 Acoustic emission(AE) Source localization Pseudo-triaxial experiment shortest path Orthogonal constraint
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
10
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles path planning Fusion algorithm
在线阅读 下载PDF
An Asynchronous Genetic Algorithm for Multi-agent Path Planning Inspired by Biomimicry
11
作者 Bin Liu Shikai Jin +3 位作者 Yuzhu Li Zhuo Wang Donglai Zhao Wenjie Ge 《Journal of Bionic Engineering》 2025年第2期851-865,共15页
To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic ... To address the shortcomings of traditional Genetic Algorithm (GA) in multi-agent path planning, such as prolonged planning time, slow convergence, and solution instability, this paper proposes an Asynchronous Genetic Algorithm (AGA) to solve multi-agent path planning problems effectively. To enhance the real-time performance and computational efficiency of Multi-Agent Systems (MAS) in path planning, the AGA incorporates an Equal-Size Clustering Algorithm (ESCA) based on the K-means clustering method. The ESCA divides the primary task evenly into a series of subtasks, thereby reducing the gene length in the subsequent GA process. The algorithm then employs GA to solve each subtask sequentially. To evaluate the effectiveness of the proposed method, a simulation program was designed to perform path planning for 100 trajectories, and the results were compared with those of State-Of-The-Art (SOTA) methods. The simulation results demonstrate that, although the solutions provided by AGA are suboptimal, it exhibits significant advantages in terms of execution speed and solution stability compared to other algorithms. 展开更多
关键词 Multi-agent path planning Asynchronous genetic algorithm Equal-size clustering Genetic algorithm
在线阅读 下载PDF
UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm
12
作者 Wenli Lei Xinghao Wu +1 位作者 KunJia Jinping Han 《Computers, Materials & Continua》 2025年第6期5679-5698,共20页
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose... Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution. 展开更多
关键词 UAV path planning chimp optimization algorithm chaotic mapping adaptive weighting
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
13
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Robot path planning based on a two-stage DE algorithm and applications
14
作者 SUN Zhe CHENG Jiajia +2 位作者 BI Yunrui ZHANG Xu SUN Zhixin 《Journal of Southeast University(English Edition)》 2025年第2期244-251,共8页
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a... To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning. 展开更多
关键词 path planning differential evolution algorithm grid method parameter adaptive adjustment
在线阅读 下载PDF
The Algorithm of the Time-Dependent Shortest Path Problem with Time Windows
15
作者 Nasser A. El-Sherbeny 《Applied Mathematics》 2014年第17期2764-2770,共7页
In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function... In this paper, we present a new algorithm of the time-dependent shortest path problem with time windows. Give a directed graph , where V is a set of nodes, E is a set of edges with a non-negative transit-time function . For each node , a time window ?within which the node may be visited and ?, is non-negative of the service and leaving time of the node. A source node s, a destination node d and a departure time?t0, the time-dependent shortest path problem with time windows asks to find an s, d-path that leaves a source node s at a departure time t0;and minimizes the total arrival time at a destination node d. This formulation generalizes the classical shortest path problem in which ce are constants. Our algorithm of the time windows gave the generalization of the ALT algorithm and A* algorithm for the classical problem according to Goldberg and Harrelson [1], Dreyfus [2] and Hart et al. [3]. 展开更多
关键词 shortest path TIME-DEPENDENT shortest path ALT algorithm A* algorithm TIME WINDOWS
在线阅读 下载PDF
Anytime algorithm based on adaptive variable-step-size mechanism for path planning of UAVs
16
作者 Hui GAO Yuhong JIA +3 位作者 Liwen XU Fengxing PAN Shaowei LI Yaoming ZHOU 《Chinese Journal of Aeronautics》 2025年第9期283-303,共21页
For autonomous Unmanned Aerial Vehicles(UAVs)flying in real-world scenarios,time for path planning is always limited,which is a challenge known as the anytime problem.Anytime planners address this by finding a collisi... For autonomous Unmanned Aerial Vehicles(UAVs)flying in real-world scenarios,time for path planning is always limited,which is a challenge known as the anytime problem.Anytime planners address this by finding a collision-free path quickly and then improving it until time runs out,making UAVs more adaptable to different mission scenarios.However,current anytime algorithms based on A^(*)have insufficient control over the suboptimality bounds of paths and tend to lose their anytime properties in environments with large concave obstacles.This paper proposes a novel anytime path planning algorithm,Anytime Radiation A^(*)(ARa A^(*)),which can generate a series of suboptimal paths with improved bounds through decreasing search step sizes and can generate the optimal path when time is sufficient.The ARa A^(*)features two main innovations:an adaptive variable-step-size mechanism and elliptic constraints based on waypoints.The former helps achieve fast path searching in various environments.The latter allows ARa A^(*)to control the suboptimality bounds of paths and further enhance search efficiency.Simulation experiments show that the ARa A^(*)outperforms Anytime Repairing A^(*)(ARA^(*))and Anytime D^(*)(AD^(*))in controlling suboptimality bounds and planning time,especially in environments with large concave obstacles.Final flight experiments demonstrate that the paths planned by ARa A^(*)can ensure the safe flight of quadrotors. 展开更多
关键词 path planning Anytime algorithm Adaptive variable-step-size Suboptimality bound Unmanned aerial vehicle(UAV)
原文传递
Altruistic Nurturing Algorithm for Multi-Objective Autonomous Underwater Vehicles Path Planning Problems
17
作者 Liu Min Chen Jianhong +4 位作者 Fan Xiaoping Ouyang Haibin Steven Li Zhang Chunliang Ding Weiping 《China Communications》 2025年第5期350-371,共22页
Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existin... Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existing algorithms often treat this as a single-objective optimization problem,whereas in reality,it should be multi-objective,considering factors such as distance,safety,and smoothness simultaneously.Secondly,the limited availability of optimization results arises due to they are single-path,which fail to meet real-world conditions.To address these challenges,first of all,an improved AUV path planning model is proposed,in which the collisions of path and obstacles are classified more specifically.Subsequently,a novel Altruistic Nurturing Algorithm(ANA)inspired by natural altruism is introduced.In the algorithm,nurturing cost considering Pareto rank and crowd distance is introduced as guidance of evolution to avoid futile calculation,abandonment threshold is self-adaptive with descendant situation to help individuals escape from local optima and double selection strategy combining crowd and k-nearest neighbors selection helps to get a better-distributed Pareto front.Experimental results comparing ANA with existing algorithms in AUV path planning demonstrate its superiority.Finally,a user-friendly interface,the Multi-Objective AUV Path Planner,is designed to provide users with a group of paths for informed decisionmaking. 展开更多
关键词 altruistic nurturing algorithm AUV path planning double selection strategy
在线阅读 下载PDF
Enhanced Coverage Path Planning Strategies for UAV Swarms Based on SADQN Algorithm
18
作者 Zhuoyan Xie Qi Wang +1 位作者 Bin Kong Shang Gao 《Computers, Materials & Continua》 2025年第8期3013-3027,共15页
In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing ... In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments. 展开更多
关键词 Coverage path planning unmanned aerial vehicles swarmintelligence DeepQ-Network A^(*)algorithm prioritized experience replay
暂未订购
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
19
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
Finding Community Structure in Networks Using a Shortest-Path-Based k-Means Algorithm
20
作者 Jinglu GAO 《Journal of Mathematical Research with Applications》 CSCD 2013年第3期288-296,共9页
We consider the problem of detecting the community structure in a complex network, groups of nodes with a higher-than-average density of edges connecting them. In this paper we use the simulated annealing strategy to ... We consider the problem of detecting the community structure in a complex network, groups of nodes with a higher-than-average density of edges connecting them. In this paper we use the simulated annealing strategy to maximize the modularity, which has been indicated as a robust benefit function, associating with a shortest-path-based k-means iterative procedure for network partition. The proposed algorithm can not only find the communities, but also identify the nodes which occupy central positions under the metric of the shortest path within the communities to which they belong. The optimal number of communities can be automatically determined without any prior knowledge about the network structure. The applications to both artificial and real-world networks demonstrate the effectiveness of our algorithm. 展开更多
关键词 community structure MODULARITY shortest path K-MEANS simulated annealing.
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部