Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography...Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving...Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.展开更多
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC...Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg...Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.展开更多
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that...Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.展开更多
Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inhere...Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.展开更多
Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial pheno...Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial phenomena such as zinc dendrite growth,parasitic side reactions,and the evolution of the solid electrolyte interphase.These processes are inherently dynamic and span multiple spatial and temporal scales,posing challenges to traditional ex situ characterization techniques.To address this,advanced in situ and operando techniques have been developed,broadly categorized into imaging,spectroscopic,synchrotron scattering/diffraction,and coupled mass spectrometry approaches.These methods enable real-time visualization and chemical analysis of the electrode/electrolyte interface,providing insights into nucleation and dissolution dynamics,interfacial chemical transformations,and the mechanisms driving dendrite formation and parasitic reactions.Through the integration of these complementary techniques,structural evolution can be correlated with electrochemical behavior,elucidating the underlying physicochemical mechanisms.This review systematically summarizes recent advances in in situ and operando characterization methods and highlights their contributions to understanding interfacial stability in aqueous ZIBs.Future directions emphasizing multi-modal strategies and data integration to guide the rational design of high-performance ZIBs are discussed.These insights are expected to accelerate the development of next-generation aqueous energy storage systems.展开更多
Recently,reactive oxygen species(ROS)-independent mimetics of oxidase with Au nanoclusters(NCs)as the catalysts and MnO_(2)as electron acceptor have gained attention.In this study,we aim to explore the oxidase-mimicki...Recently,reactive oxygen species(ROS)-independent mimetics of oxidase with Au nanoclusters(NCs)as the catalysts and MnO_(2)as electron acceptor have gained attention.In this study,we aim to explore the oxidase-mimicking potential of bovine serum albumin(BSA)-templated metal nanoclusters(BSA-M NCs,where M=Ag,Pt,Cu,or Cd)beyond Au NCs in boosting the oxidation of 3,3',5,5'-tetramethylbenzidine(TMB)by MnO_(2),denoted as BM@Metal.The oxidase-mimetic activity of BM@Metal is independent of ROS and generally enhanced by the incorporation of metal nanoclusters.Notably,this enhancement varies with the metal species,with BSA-Cd exhibiting the highest activity.The X-ray photoelectron spectroscopy(XPS)analysis confirms mixed valence states(Mn(Ⅳ)/Mn(Ⅱ))in BM@Cd.Given that the catalytic activity is closely linked to the substrate adsorption,the label-free isothermal titration calorimetry was employed to probe the affinity between TMB and BSA-M NCs,which provides a robust approach for probing the interface adsorption.The results reveal that the superior catalytic performance of BSA-Cd correlates with enhanced TMB adsorption,likely facilitated by coordination and hydrophobic interactions.Finally,the superior catalytic performance of BSA-M NCs on the oxidation of TMB by MnO_(2)has inspired us to fabricate the assay for analyzing α-glucosidase’s activity.This work not only demonstrates the versatility of metal NCs in constructing ROS-independent oxidase mimetics but also provides interfacial adsorption engineered strategy for the rational design of superior ROS independent mimetics of natural oxidase.展开更多
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin...The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.展开更多
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa...Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.展开更多
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the...Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.展开更多
1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their...1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their incredible speed of development and wide-reaching impact,mobile communications serve as the cornerstone of the Internet of Everything,profoundly reshaping human cognitive abilities and ways of thinking.Furthermore,mobile communications are altering the patterns of production and life,driving leaps in productivity quality,and strongly promot-ing innovation within human civilization.展开更多
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s...In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.展开更多
Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration...Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment.展开更多
Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride he...Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures(denoted PtPdAu/BiTe)were synthesized using a visible-light-assisted strategy.The coupling alloy and interfacial effects of PtPdAu/BiTe significantly improved the performance and stability of both the ethanol oxidation reaction(EOR)and methanol oxidation reaction(MOR).Introducing a small amount of Au effectively enhanced the CO tolerance of PtPdAu/BiTe compared to dendritic platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures.PtPdAu/BiTe exhibited mass activities of 31.5 and 13.3 A·mg_(Pt)^(-1)in EOR and MOR,respectively,which were 34.4 and 13.2 times higher than those of commercial Pt black,revealing efficient Pt atom utilization.In-situ Fourier transform infrared spectroscopy demonstrated complete 12e^(-)and 6e^(-)oxidation of ethanol and methanol on PtPdAu/BiTe.The PtPdAu/BiTe/C achieved mass peak power densities of 131 and 156 mW·mg_(Pt)^(-1),which were 2.4 and 2.2 times higher than those of Pt/C in practical direct ethanol fuel cell(DEFC)and direct methanol fuel cell(DMFC),respectively,highlighting their potential application in DEFC and DMFC.This study introduces an effective strategy for designing efficient and highly CO tolerant anodic electrocatalysts for practical DEFC and DMFC applications.展开更多
Solid-state lithium batteries have become a research hotspot in the field of large-scale energy storage due to their excellent safety performance.The development of high-voltage positive electrode materials matched wi...Solid-state lithium batteries have become a research hotspot in the field of large-scale energy storage due to their excellent safety performance.The development of high-voltage positive electrode materials matched with lithium metal anode have advanced the energy density of solid-state lithium batteries close to or even exceeding that of lithium batteries based on a liquid electrolyte,which is expected to be commercialized in the future.However,in high voltage conditions(>4.3 V),the decomposition of electrolyte components,structural degradation,and interface side reactions significantly reduce battery performance and hinder its further development.This review summarizes the latest research progress of inorganic electrolytes,polymer electrolytes,and composite electrolytes in high-voltage solid-state lithium batteries.At the same time,the designs of high-voltage polymer gel electrolyte and high-voltage quasi solid-state electrolyte are introduced in detail.In addition,interface engineering is crucial for improving the overall performance of high-voltage solid-state batteries.Finally,we highlight the challenges faced by high-voltage solid-state lithium batteries and put forward our own views on future research directions.This review offers instructive insights into the advancement of high-voltage solid-state lithium batteries for large-scale energy storage applications.展开更多
文摘Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019).
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金the financial support from the National Natural Science Foundation of China(52203123 and 52473248)State Key Laboratory of Polymer Materials Engineering(sklpme2024-2-04)+1 种基金the Fundamental Research Funds for the Central Universitiessponsored by the Double First-Class Construction Funds of Sichuan University。
文摘Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.
基金supported by the National Key R&D Program of China(2021YFF1200602)the National Science Fund for Excellent Overseas Scholars(0401260011)+3 种基金the National Defense Science and Technology Innovation Fund of Chinese Academy of Sciences(c02022088)the Tianjin Science and Technology Program(20JCZDJC00810)the National Natural Science Foundation of China(82202798)the Shanghai Sailing Program(22YF1404200).
文摘Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ22C130001)the National Natural Science Foundation of China(32171887,and 52002028,and 52192610)+1 种基金the National Key Research and Development Project from Minister of Science&Technology(2021YFA0202704)Beijing Municipal Science&Technology Commission(Z171100002017017).
文摘Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science.
基金the National Key R&D Plan of the Ministry of Science and Technology of China(2022YFE0122400)National Natural Science Foundation of China(52002238,22102207)+1 种基金Science and Technology Commission of Shanghai Municipality(22ZR1423800,21ZR1465200,23ZR1423600)Shanghai Municipal Education Commission and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B49G680115).
文摘Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.
文摘Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability.
基金the Natural Science Foundation of Shanghai(No.25ZR1401102)China Scholarship Council(CSC)ECNU Academic Innovation Promotion Program for Excellent Doctoral Students(No.YBNLTS2025-024).
文摘Aqueous zinc-ion batteries(ZIBs)have attracted significant interest as safe,low-cost,and environmentally friendly energy storage systems.However,their performance and stability are limited by complex interfacial phenomena such as zinc dendrite growth,parasitic side reactions,and the evolution of the solid electrolyte interphase.These processes are inherently dynamic and span multiple spatial and temporal scales,posing challenges to traditional ex situ characterization techniques.To address this,advanced in situ and operando techniques have been developed,broadly categorized into imaging,spectroscopic,synchrotron scattering/diffraction,and coupled mass spectrometry approaches.These methods enable real-time visualization and chemical analysis of the electrode/electrolyte interface,providing insights into nucleation and dissolution dynamics,interfacial chemical transformations,and the mechanisms driving dendrite formation and parasitic reactions.Through the integration of these complementary techniques,structural evolution can be correlated with electrochemical behavior,elucidating the underlying physicochemical mechanisms.This review systematically summarizes recent advances in in situ and operando characterization methods and highlights their contributions to understanding interfacial stability in aqueous ZIBs.Future directions emphasizing multi-modal strategies and data integration to guide the rational design of high-performance ZIBs are discussed.These insights are expected to accelerate the development of next-generation aqueous energy storage systems.
基金the financial support from the National Natural Science Foundation of China(Nos.22073025,21603067,and U23A2089)the Program of Science and Technology Plan of the City of Tianjin(No.24JRRCRC00040)+1 种基金Opening Fund of Hubei Key Laboratory of Bioinorganic Chemistry&Materia Medica(No.BCMM202507)the Open Fund of Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine(No.KLRCCM2404).
文摘Recently,reactive oxygen species(ROS)-independent mimetics of oxidase with Au nanoclusters(NCs)as the catalysts and MnO_(2)as electron acceptor have gained attention.In this study,we aim to explore the oxidase-mimicking potential of bovine serum albumin(BSA)-templated metal nanoclusters(BSA-M NCs,where M=Ag,Pt,Cu,or Cd)beyond Au NCs in boosting the oxidation of 3,3',5,5'-tetramethylbenzidine(TMB)by MnO_(2),denoted as BM@Metal.The oxidase-mimetic activity of BM@Metal is independent of ROS and generally enhanced by the incorporation of metal nanoclusters.Notably,this enhancement varies with the metal species,with BSA-Cd exhibiting the highest activity.The X-ray photoelectron spectroscopy(XPS)analysis confirms mixed valence states(Mn(Ⅳ)/Mn(Ⅱ))in BM@Cd.Given that the catalytic activity is closely linked to the substrate adsorption,the label-free isothermal titration calorimetry was employed to probe the affinity between TMB and BSA-M NCs,which provides a robust approach for probing the interface adsorption.The results reveal that the superior catalytic performance of BSA-Cd correlates with enhanced TMB adsorption,likely facilitated by coordination and hydrophobic interactions.Finally,the superior catalytic performance of BSA-M NCs on the oxidation of TMB by MnO_(2)has inspired us to fabricate the assay for analyzing α-glucosidase’s activity.This work not only demonstrates the versatility of metal NCs in constructing ROS-independent oxidase mimetics but also provides interfacial adsorption engineered strategy for the rational design of superior ROS independent mimetics of natural oxidase.
基金supported by the Key Science and Technol-ogy Program of Henan Province(No.232102241020)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)+1 种基金the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001)the Natural Science Foundation of Henan Province(242300420021).
文摘The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172159 and 42302143)the Postdoctora Fellowship Program of the China Postdoctoral Science Foundation(CPSF)(Grant No.GZB20230864).
文摘Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping.
基金The Open Project of State Key Laboratory of Smart Grid Protection and Operation Control in 2022(No.SGNR0000KJJS2302150).
文摘Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm.
基金supported by the National Key Research and Develop-ment Program of China(2019YFB1803400).
文摘1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their incredible speed of development and wide-reaching impact,mobile communications serve as the cornerstone of the Internet of Everything,profoundly reshaping human cognitive abilities and ways of thinking.Furthermore,mobile communications are altering the patterns of production and life,driving leaps in productivity quality,and strongly promot-ing innovation within human civilization.
基金Funded by the National Natural Science Foundation of China(Nos.52075347,51575364)and the Natural Science Foundation of Liaoning Provincial(No.2022-MS-295)。
文摘In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal.
基金financially supported by Jilin Provincial Natural Science Foundation (No.20220101164JC)。
文摘Understanding the factors triggering slope failure is essential to ensure the safety of buildings and transportation infrastructure on slopes. Specifically,the failure of stabilizing piles due to groundwater migration and freeze–thaw(FT) cycles is a significant factor causing slope failure. This study aims to investigate the transmedia seepage characteristics at slope–concrete stabilizing pile interface systems by using silty clay and concrete with varying microstructure characteristics under FT cycles. To this end, a self-developed indoor test device for transmedia water migration, combined with a macro-meso-micro multiscale testing approach, was used to analyze the laws and mechanisms of transmedia seepage at the interface systems. The effect of the medium's microstructure characteristics on the transmedia seepage behavior at the interface systems under FT cycles was also assessed. Results indicated that the transmedia water migration exhibited particularity due to the migration of soil particles and the low permeability characteristics of concrete. The water content in the media increased significantly within the range of 1/3–2/3 of the height from the interface for soil and within 5 mm from the interface for concrete.FT cycles promoted the increase and penetration of cracks within the medium, enhancing the permeability of the slope-concrete stabilizing pile interface systems.With the increase in FT cycles, the porosity inside the medium first decreased and then increased, and the porosity reached the minimum after 25 FT cycles and the maximum after 75 FT cycles, and the water content of the medium after water migration was positively correlated with the porosity. FT cycles also significantly influenced the temporal variation characteristics of soil moisture and the migration path of water in concrete. The study results could serve as a reference for related research on slope stability assessment.
基金supported by the National Natural Science Foundation of China(No.22465009)the Education Department of Guizhou Province(No.2021312)the Foundation of Guizhou Province(No.2019-5666).
文摘Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures(denoted PtPdAu/BiTe)were synthesized using a visible-light-assisted strategy.The coupling alloy and interfacial effects of PtPdAu/BiTe significantly improved the performance and stability of both the ethanol oxidation reaction(EOR)and methanol oxidation reaction(MOR).Introducing a small amount of Au effectively enhanced the CO tolerance of PtPdAu/BiTe compared to dendritic platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures.PtPdAu/BiTe exhibited mass activities of 31.5 and 13.3 A·mg_(Pt)^(-1)in EOR and MOR,respectively,which were 34.4 and 13.2 times higher than those of commercial Pt black,revealing efficient Pt atom utilization.In-situ Fourier transform infrared spectroscopy demonstrated complete 12e^(-)and 6e^(-)oxidation of ethanol and methanol on PtPdAu/BiTe.The PtPdAu/BiTe/C achieved mass peak power densities of 131 and 156 mW·mg_(Pt)^(-1),which were 2.4 and 2.2 times higher than those of Pt/C in practical direct ethanol fuel cell(DEFC)and direct methanol fuel cell(DMFC),respectively,highlighting their potential application in DEFC and DMFC.This study introduces an effective strategy for designing efficient and highly CO tolerant anodic electrocatalysts for practical DEFC and DMFC applications.
基金supported by the National Key R&D Program of China(2024YFA1211100)the National Natural Science Foundation of China(52301278,22479080,52202254,92372001,22393900,and 92372203)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20230937,BK20220966)the Science and Technology Plans of Tianjin(23JCYBJC00170,24JCJQJC00220,and 24ZXZSSS00390)the Fundamental Research Funds for the Central Universities(02063253167,30922010708)。
文摘Solid-state lithium batteries have become a research hotspot in the field of large-scale energy storage due to their excellent safety performance.The development of high-voltage positive electrode materials matched with lithium metal anode have advanced the energy density of solid-state lithium batteries close to or even exceeding that of lithium batteries based on a liquid electrolyte,which is expected to be commercialized in the future.However,in high voltage conditions(>4.3 V),the decomposition of electrolyte components,structural degradation,and interface side reactions significantly reduce battery performance and hinder its further development.This review summarizes the latest research progress of inorganic electrolytes,polymer electrolytes,and composite electrolytes in high-voltage solid-state lithium batteries.At the same time,the designs of high-voltage polymer gel electrolyte and high-voltage quasi solid-state electrolyte are introduced in detail.In addition,interface engineering is crucial for improving the overall performance of high-voltage solid-state batteries.Finally,we highlight the challenges faced by high-voltage solid-state lithium batteries and put forward our own views on future research directions.This review offers instructive insights into the advancement of high-voltage solid-state lithium batteries for large-scale energy storage applications.