Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical proper...Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.展开更多
NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a seri...NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a series of three-dimensionally ordered macroporous(3DOM) catalysts were synthesized via a colloidal crystal template(CCT) method, and various characterizations were carried out to explore the physicochemical property of catalysts. The experiment results reveal that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst presents the excellent low-temperature catalytic activity of nearly 100% at 100℃. Furthermore, the enhanced H_(2)O resistance is achieved, certified by the unaffected NO remove at 150℃ in the participation of 15 vol% H_(2)O. The characterizations results exhibit that the improved dispersion of the active component and enhanced redox ability are conducive to the low-temperature catalytic activity. N_(2) adsorption and desorption experiments indicate that catalyst with 3DOM support possesses a larger pore diameter and specific surface area, which may weaken the condensation of H_(2)O in the microporosity of catalysts and improved the H_(2)O resistance of the catalyst. In situ DRIFTS results manifest that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst could not only absorb more NH_(3) and generate more surface-active sites, but inhibit the competitive adsorption between H_(2)O and SCR reactants.展开更多
The catalysts of three-dimensionally ordered macroporous(3 DOM)Al_(2)O_(3)-supported core-shell structured Pt@MnOx nanoparticles(3 DOM-Pt@MnO_(x)/Al_(2)O_(3))were successfully prepared by the gas bubbling-assisted mem...The catalysts of three-dimensionally ordered macroporous(3 DOM)Al_(2)O_(3)-supported core-shell structured Pt@MnOx nanoparticles(3 DOM-Pt@MnO_(x)/Al_(2)O_(3))were successfully prepared by the gas bubbling-assisted membrane reduction-precipitation(GBMR/P)method.Pt@MnO_(x)core-shell nanoparticles(NPs)are highly dispersed on the inner surface of 3 DOM-Al_(2)O_(3)support.Pt@MnOx/3 DOM-Al_(2)O_(3)catalysts,which combine both advantages of high-efficiency soot-catalyst contact by 3 DOM-Al_(2)O_(3)structure and the abundant active sites by the optimized Pt-MnO_(x)interface,exhibit high catalytic activities for soot combustion,and the catalytic activities are strongly dependent on the thickness of MnO_(x)shell.Among the catalysts,3 DOM-Pt@MnO_(x)/Al_(2)O_(3)-1 catalyst with optimized Pt-MnO_(x)interface shows the highest catalytic activity for soot combustion,i.e.,its values of T_(50)and S_(CO_(2))^(m) are 351℃and98.6%,respectively.The highest density of Pt-MnO_(x)active sites for adsorptio n-activation of gaseous O_(2)is responsible for enhancing catalytic activity for soot combustion.Pt@MnOx/3 DOM-Al_(2)O_(3)catalysts are promising to practical applications for the emission reduction of soot particles.展开更多
基金supported by the Tianjin Municipal Natural Science Foundation(17JCYBJC22600)the Fundamental Research Funds for the Central Universities~~
文摘Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.
基金Project supported by National Key Research and Development Program of China(2021YFB3500601)。
文摘NH_(3)-SCR is an effective mean of NOxremoval in the non-electric industry, however, the high activation temperature and poor H_(2)O resistance of SCR catalysts posed a barrier to its application. In this work, a series of three-dimensionally ordered macroporous(3DOM) catalysts were synthesized via a colloidal crystal template(CCT) method, and various characterizations were carried out to explore the physicochemical property of catalysts. The experiment results reveal that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst presents the excellent low-temperature catalytic activity of nearly 100% at 100℃. Furthermore, the enhanced H_(2)O resistance is achieved, certified by the unaffected NO remove at 150℃ in the participation of 15 vol% H_(2)O. The characterizations results exhibit that the improved dispersion of the active component and enhanced redox ability are conducive to the low-temperature catalytic activity. N_(2) adsorption and desorption experiments indicate that catalyst with 3DOM support possesses a larger pore diameter and specific surface area, which may weaken the condensation of H_(2)O in the microporosity of catalysts and improved the H_(2)O resistance of the catalyst. In situ DRIFTS results manifest that Ce_(0.2)Mn_(0.2)/3DOM-TiO_(2) catalyst could not only absorb more NH_(3) and generate more surface-active sites, but inhibit the competitive adsorption between H_(2)O and SCR reactants.
基金supported by the National Natural Science Foundation of China(Nos.21673142,21972166)Beijing Natural Science Foundation(No.2202045)+2 种基金National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2017A05)PetroChina Innovation Foundation(No.2018D-5007-0505)Science Foundation of China University of Petroleum,Beijing(No.242017QNXZ02)。
文摘The catalysts of three-dimensionally ordered macroporous(3 DOM)Al_(2)O_(3)-supported core-shell structured Pt@MnOx nanoparticles(3 DOM-Pt@MnO_(x)/Al_(2)O_(3))were successfully prepared by the gas bubbling-assisted membrane reduction-precipitation(GBMR/P)method.Pt@MnO_(x)core-shell nanoparticles(NPs)are highly dispersed on the inner surface of 3 DOM-Al_(2)O_(3)support.Pt@MnOx/3 DOM-Al_(2)O_(3)catalysts,which combine both advantages of high-efficiency soot-catalyst contact by 3 DOM-Al_(2)O_(3)structure and the abundant active sites by the optimized Pt-MnO_(x)interface,exhibit high catalytic activities for soot combustion,and the catalytic activities are strongly dependent on the thickness of MnO_(x)shell.Among the catalysts,3 DOM-Pt@MnO_(x)/Al_(2)O_(3)-1 catalyst with optimized Pt-MnO_(x)interface shows the highest catalytic activity for soot combustion,i.e.,its values of T_(50)and S_(CO_(2))^(m) are 351℃and98.6%,respectively.The highest density of Pt-MnO_(x)active sites for adsorptio n-activation of gaseous O_(2)is responsible for enhancing catalytic activity for soot combustion.Pt@MnOx/3 DOM-Al_(2)O_(3)catalysts are promising to practical applications for the emission reduction of soot particles.