Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging f...Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS softw...Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained.展开更多
Integrated Sensing and Communication(ISAC)is considered a key technology in 6G networks.An accurate sensing channel model is crucial for the design and sensing performance evaluation of ISAC systems.The widely used Ge...Integrated Sensing and Communication(ISAC)is considered a key technology in 6G networks.An accurate sensing channel model is crucial for the design and sensing performance evaluation of ISAC systems.The widely used Geometry-Based Stochastic Model(GBSM),typically applied in standardized channel modeling,mainly focuses on the statistical fading characteristics of the channel.However,it fails to capture the characteristics of targets in ISAC systems,such as their positions and velocities,as well as the impact of the targets on the background.To address this issue,this paper proposes an Extended-GBSM(E-GBSM)sensing channel model that incorporates newly discovered channel characteristics into a unified modeling framework.In this framework,the sensing channel is divided into target and background channels.For the target channel,the model introduces a concatenated modeling approach,while for the background channel,a parameter called the power control factor is introduced to assess impact of the target on the background channel,making the modeling framework applicable to both mono-static and bi-static sensing modes.To validate the proposed model’s effectiveness,measurements of target and background channels are conducted across a wide range of indoor and outdoor scenarios,covering various sensing targets such as metal plates,reconfigurable intelligent surfaces,human bodies,unmanned aerial vehicles,and vehicles.The experimental results provide important theoretical support and empirical data for the standardization of ISAC channel modeling.展开更多
Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as...Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then, based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D model reconstruction and contributes to technological advancements in relevant fields.展开更多
Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) w...Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.展开更多
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner...Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.展开更多
The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreach...The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.展开更多
This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)syste...This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.展开更多
By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (...By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.展开更多
According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are prese...According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a ...Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) com- pressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in produc- ing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the sim- ulation of similar material modeling experiments.展开更多
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat...The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.展开更多
According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly...According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.展开更多
Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D ...Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.展开更多
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici...Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.展开更多
Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevatio...Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.展开更多
Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental marg...Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental margin. From the observed deformation style on the northern South China Sea and analogue modeling experiments, we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset, supposed to be formed with normal lithosphere extension. On the slope, where the lithosphere is very hot due to mantle upweUing and heating, composite grabens composed of symmetric grabens developed. The boundary and inner faults are all short with small vertical offset. Between the zones with very hot and normal lithosphere, composite half grabens composed of half grabens or asymmetric grabens formed, whose boundary faults are long with large vertical offset, while the inner faults are relatively short. Along with the thickness decrease of the brittle upper crust due to high temperature, the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike. When there was a bend in the pre-existing weakness zone, and the basal plate was pulled by a clockwise rotating stress, the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments, which contributes to a hotter lithosphere in the middle segment, where the Baiyun (白云) sag formed.展开更多
文摘Using a dynamic laser monitoring technique,the solubility of 3-nitro-1,2,4-triazole-5-one(NTO)was investigated in two different binary systems,namely hydroxylamine nitrate(HAN)-water and boric acid(HB)-water ranging from 278.15 K to 318.15 K.The solubility in each system was found to be positively correlated with temperature.Furthermore,solubility data were analyzed using four equations:the modified Apelblat equation,Van’t Hoff equation,λh equation and CNIBS/R-K equations,and they provided satisfactory results for both two systems.The average root-mean-square deviation(105RMSD)values for these models were less than 13.93.Calculations utilizing the Van’t Hoff equation and Gibbs equations facilitated the derivation of apparent thermodynamic properties of NTO dissolution in the two systems,including values for Gibbs free energy,enthalpy and entropy.The%ζ_(H)is larger than%ζ_(TS),and all the%ζ_(H)data are≥58.63%,indicating that the enthalpy make a greater contribution than entropy to theΔG_(soln)^(Θ).
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金National Undergraduate Training Program for Innovation and Entrepreneurship(Project No.:202310407006)。
文摘Highway planning requires geological surveys and stability analysis of the surrounding area.In the early stage of the survey,the modeling and stability analysis of the survey area can be carried out by using GIS software to intuitively understand the topography of the study area.The use of DEM to extract terrain factors can be used for simple stability analysis and the source data is easy to obtain,simple to operate,fast to analyze,and reliable analysis results.In this paper,taking the X104 road section in Ganxian County as an example,the ArcGIS platform is used to carry out 3D modeling visualization and stability analysis,and the stability evaluation map of the study area is obtained.
基金supported in part by the Young Scientists Fund of the National Natural Science Foundation of China(No.62201087)in part by the National Natural Science Foundation of China(No.62525101,62341128)+3 种基金in part by the National Key R&D Program of China(No.2023YFB2904803)in part by the Guangdong Major Project of Basic and Applied Basic Research(No.2023B0303000001)in part by the Beijing Natural Science Foundation(No.L243002)in part by the Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint innovation Center.
文摘Integrated Sensing and Communication(ISAC)is considered a key technology in 6G networks.An accurate sensing channel model is crucial for the design and sensing performance evaluation of ISAC systems.The widely used Geometry-Based Stochastic Model(GBSM),typically applied in standardized channel modeling,mainly focuses on the statistical fading characteristics of the channel.However,it fails to capture the characteristics of targets in ISAC systems,such as their positions and velocities,as well as the impact of the targets on the background.To address this issue,this paper proposes an Extended-GBSM(E-GBSM)sensing channel model that incorporates newly discovered channel characteristics into a unified modeling framework.In this framework,the sensing channel is divided into target and background channels.For the target channel,the model introduces a concatenated modeling approach,while for the background channel,a parameter called the power control factor is introduced to assess impact of the target on the background channel,making the modeling framework applicable to both mono-static and bi-static sensing modes.To validate the proposed model’s effectiveness,measurements of target and background channels are conducted across a wide range of indoor and outdoor scenarios,covering various sensing targets such as metal plates,reconfigurable intelligent surfaces,human bodies,unmanned aerial vehicles,and vehicles.The experimental results provide important theoretical support and empirical data for the standardization of ISAC channel modeling.
基金funded by the Chinese State Grid Jiangsu Electric Power Co.,Ltd.Science and Technology Project Funding,Grant Number J2023031.
文摘Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then, based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D model reconstruction and contributes to technological advancements in relevant fields.
基金supported by the Ministry of Public Works and Housing of Indonesia and Parahyangan Catholic University(Grant No.II/PD/2023-07/02-SJ).
文摘Research on scale effects on flows over weirs has been conducted on a limited basis, primarily focusing on flows upstream of a single-type weir, such as ogee, broad-crested, and sharp-crested (linear and non-linear) weirs. However, the scale effects downstream of these single-type weirs have not been thoroughly investigated. This study examined the scale effects on flows over a combined weir system consisting of an ogee weir and a sharp-crested weir, both upstream and downstream, utilizing physical modeling at a 1:33.33 scale based on Froude similarity and three-dimensional (3D) computational fluid dynamics (CFD) modeling. The sharp-crested weir in this study was represented by two sluice gates that remain closed and submerged during flood events. The experimental data confirmed that the equivalent discharge coefficients of the combined weir system behaved similarly to those of a sharp-crested weir across various H/P (where H is the total head, and P is the weir height) values. However, scale effects on the discharge rating curve due to surface tension and viscosity could only be minimized when H/P > 0.4, Re > 26 959, and We > 240 (where Re and We are the Reynolds and Weber numbers, respectively), provided that the water depth exceeded 0.042 m above the crest. Additionally, Re greater than 4 × 104 was necessary to minimize scale effects caused by viscosity in flows in the spillway channel and stilling basin (with baffle blocks). The limiting criteria aligned closely with existing literature. This study offers valuable insights for practical applications in hydraulic engineering in the future.
基金supported by the fundings from 2024 Young Talents Program for Science and Technology Thinking Tanks(No.XMSB20240711041)2024 Student Research Program on Dynamic Simulation and Force-on-Force Exercise of Nuclear Security in 3D Interactive Environment Using Reinforcement Learning,Natural Science Foundation of Top Talent of SZTU(No.GDRC202407)+2 种基金Shenzhen Science and Technology Program(No.KCXFZ20240903092603005)Shenzhen Science and Technology Program(No.JCYJ20241202124703004)Shenzhen Science and Technology Program(No.KJZD20230923114117032)。
文摘Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and 42177139)Graduate Innovation Fund of Jilin University(Grant No.2024CX099)。
文摘The spatial distribution of discontinuities and the size of rock blocks are the key indicators for rock mass quality evaluation and rockfall risk assessment.Traditional manual measurement is often dangerous or unreachable at some high-steep rock slopes.In contrast,unmanned aerial vehicle(UAV)photogrammetry is not limited by terrain conditions,and can efficiently collect high-precision three-dimensional(3D)point clouds of rock masses through all-round and multiangle photography for rock mass characterization.In this paper,a new method based on a 3D point cloud is proposed for discontinuity identification and refined rock block modeling.The method is based on four steps:(1)Establish a point cloud spatial topology,and calculate the point cloud normal vector and average point spacing based on several machine learning algorithms;(2)Extract discontinuities using the density-based spatial clustering of applications with noise(DBSCAN)algorithm and fit the discontinuity plane by combining principal component analysis(PCA)with the natural breaks(NB)method;(3)Propose a method of inserting points in the line segment to generate an embedded discontinuity point cloud;and(4)Adopt a Poisson reconstruction method for refined rock block modeling.The proposed method was applied to an outcrop of an ultrahigh steep rock slope and compared with the results of previous studies and manual surveys.The results show that the method can eliminate the influence of discontinuity undulations on the orientation measurement and describe the local concave-convex characteristics on the modeling of rock blocks.The calculation results are accurate and reliable,which can meet the practical requirements of engineering.
文摘This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.
基金National Natural Science Foundation of China(No.51275486)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111420110005)
文摘By selecting any one limb of 3-RSR parallel robot as a research object, the paper establishes a position and orienta- tion relationship matrix between the moving platform and the base by means of Denavit-Hartenberg (D-H) transformation matrix. The error mapping model is derived from original error to the error of the platform by using matrix differential method. This model contains all geometric original errors of the robot. The nonlinear implicit function relation between po- sition and orientation error of the platform and the original geometric errors is simplified as a linear explicit function rela- tion. The results provide a basis for further studying error analysis and error compensation.
文摘According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
基金financial support from the National Natural Science Foundation of China (Grants 41172284 and 51379202)
文摘Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) com- pressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in produc- ing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the sim- ulation of similar material modeling experiments.
基金This research is sponsored by the National Natural Science Foundation of China (No. 40374024).
文摘The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations.
基金Projects(2007BAK22B04, 2006BAB02B05) supported by the National 11th Five-Year Science and Technology Supporting Plan of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.
基金supported by the National Basic Research Program of China(Grant No.1212010881001 )the National Scicnce of the 12th "Five-Year Technology Support Program"(Grant No.2010BAE00281-6)+1 种基金the National Natural Science Foundation of China(Grant Nos.40772157,40972232, 41072070)the State Key Laboratory of Geological Processes and Mineral Resources(Grant Nos.GPMR0941,200624)
文摘Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.
基金supported by a grant(No.14DZ2292800,http://www.greengeo.net/)from“Technology Service Platform of Civil Engineering”of Science and Technology Commission of Shanghai Municipality.
文摘Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management.
基金supported by the 3D Model Library of Geo-hazards in the 3GR (No. SXJC-3ZH1A7)the software development of 3D area disaster geology map in the 3GR (No. SXJC-3ZH1A6)+1 种基金survey data acquisition and geologic map CAD system in the 3GR (No. SXKY4-02)985 Platform Projects,3D modeling and space analysis system of geo-hazards and the National Natural Science Foundation of China (No. 41172300)
文摘Taking hundreds of pieces of hazardous geological maps (1 : 10 000) of Three Gorges res-ervoir area (3GR) as background, we establish regional three-dimensional (3D) geo-hazard modelusing DEM (digital elevation model) superposed surface images and geo-hazards elements. Based on landslides and other geo-hazard survey data,using improved B-REP(boundary representa-tion)entity data structure (two-body 3D data structure), we set up 3D solid models for each hazardous bodies in each hazardous geological maps. Then we integrate the two types of 3D models with different scales from area to point, which are the regional geo-hazard 3D model and the solid models of each disaster body, in order to provide a visual processing and analysis plat-form for danger partition, stability evaluation, disaster prevention and control, early warning and command.
基金supported by the National Basic Research Pro-gram of China (Nos. 2009CB219401, 2007CB41170405)the CAS Key Innovation Program (No. KZCX3-SW-234-1)+2 种基金the National Natural Science Foundation of China (Nos. 40876026, 40576027)the Knowledge Innovation Program of the South China Sea Institute of Oceanology, CAS (No. LYQY200704)the Open Fund of the Key Laboratory of Marine Geology and Environment, CAS
文摘Affected by thermal perturbation due to mantle uprising, the rheological structure of the lithosphere could be modified, which could lead to different rifting patterns from shelf to slope in a passive continental margin. From the observed deformation style on the northern South China Sea and analogue modeling experiments, we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset, supposed to be formed with normal lithosphere extension. On the slope, where the lithosphere is very hot due to mantle upweUing and heating, composite grabens composed of symmetric grabens developed. The boundary and inner faults are all short with small vertical offset. Between the zones with very hot and normal lithosphere, composite half grabens composed of half grabens or asymmetric grabens formed, whose boundary faults are long with large vertical offset, while the inner faults are relatively short. Along with the thickness decrease of the brittle upper crust due to high temperature, the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike. When there was a bend in the pre-existing weakness zone, and the basal plate was pulled by a clockwise rotating stress, the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments, which contributes to a hotter lithosphere in the middle segment, where the Baiyun (白云) sag formed.