The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater...The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is e...This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.展开更多
Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured...Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.展开更多
This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuato...This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations.The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations,the 3D divergence equation for magnetic induction,and the 3D divergence equation for the electric displacement.The proposed solution involves the exponential matrix in the thickness direction and primary variables’harmonic forms in the in-plane ones.A closed-form solution is performed considering simply-supported boundary conditions.Interlaminar continuity conditions are imposed for displacements,magnetic potential,electric potential,transverse shear/normal stresses,transverse normal magnetic induction and transverse normal electric displacement.Therefore,a layerwise approach is adopted.The results section is composed of an assessment part,where the present model is compared to past 3D electro-elastic or magneto-elastic formulations and a new benchmark part.Benchmarks consider sensor and actuator plate configurations for the fully coupled magneto-electro-elastic cases for different thickness ratios.Tabular and graphical results are presented for displacements,stresses,magnetic potential,electric potential,transverse normal magnetic induction and transverse normal electric displacement.For each presented benchmark,magneto-electro-elastic coupling and thickness and material layer effects are discussed in depth.展开更多
Current developments in magnetohydrodynamic(MHD)convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems,particularly through the use of carbon nanotube(C...Current developments in magnetohydrodynamic(MHD)convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems,particularly through the use of carbon nanotube(CNT)–based fluids that offer exceptional thermal conductivity.Despite extensive research on MHD natural convection in enclosures,the combined effects of complex obstacle geometries,magnetic fields,and CNT nanofluids in three-dimensional configurations remain insufficiently explored.This research investigates MHD natural convection of carbon nanotube(CNT)-water nanofluid within a three-dimensional cavity.The study considers an inclined cross-shaped hot obstacle,a configuration not extensively explored in previous works.The work aims to elucidate the combined effects of CNT nanofluid concentration,magnetic field strength,and obstacle inclination on fluid flow patterns and heat transfer characteristics.Numerical simulations are performed using the finite element method(FEM)based on the Galerkin Weighted Residual approach.The analysis systematically considers variations in Rayleigh number(Ra),Hartmann number(Ha),nanoparticle volume fraction(Φ),and obstacle inclination angle(θ).Results show that increasing Ra from 103 to 106 enhances convective heat transfer by up to 228%,while raising the CNT volume fraction to 4.5%improves heat transfer by about 64%.In contrast,strengthening the magnetic field from Ha=0 to Ha=100 suppresses fluid motion and reduces heat transfer by nearly 67%,whereas varying the obstacle inclination from 0○to 45○leads to a 4.6%decrease in efficiency.The addition of nanoparticles slightly increases viscosity,reducing flow intensity by 8.3%when Ha=0.Furthermore,a novel multiparametric correlation is proposed,accurately predicting the average Nusselt number as a function of Ra,Ha,ϕ,andθ,with an R2 of 0.98.These findings provide new insights into the role of geometry,magnetic effects,and nanofluids in heat transfer enhancement,offering practical guidance for the design and optimization of advanced thermal systems.展开更多
A three-dimensional(3D)analytical formulation is proposed to put together magnetic,electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates.The present 3D mo...A three-dimensional(3D)analytical formulation is proposed to put together magnetic,electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates.The present 3D model allows analyses for layered smart plates in both open-circuit and closed-circuit configurations.The secondorder differential equations written in the mixed curvilinear reference system govern the magneto-electro-elastic free vibration problem for multilayered plates.This set consists of the 3D equations of motion and the 3D divergence equations for the magnetic induction and electric displacement.Navier harmonic forms in the planar directions and the exponential matrix method in the transversal direction of the plate are applied to solve the second-order differential equations in terms of displacements.For these reasons,simply-supported boundary conditions are considered.Imposition of interlaminar continuity conditions on primary variables(displacements,magnetic potential,electric potential),and some secondary variables(transverse normal and transverse shear stresses,transverse normal magnetic induction/electric displacement)allows the implementation of the layer-wise approach.Assessments for both load boundary configurations are proposed in the results section to validate the present 3D approach.3D electro-elastic and 3D magneto-elastic coupling validations are performed separately considering different models from the open literature.A new benchmark involving a full magneto-electro-elastic coupling for multilayered plates is presented considering both load boundary configurations for different thickness ratios.For this benchmark,circular frequency values and related vibration modes through the transverse direction in terms of displacements,magnetic and electric potential,transverse normal magnetic induction/electric displacement are shown to visualize the magneto-electroelastic coupling and material and thickness layer effects.The present formulation has been entirely implemented in an academic Matlab(R2024a)code developed by the authors.In this paper,for the first time,the second-order differential equations governing the magneto-electro-elastic problem for the free vibration analysis of plates has been solved considering the mixed mode of harmonic forms and exponential matrix.The exponential matrix permits computing the secondary variable of the problem(stresses,electric displacement components and magnetic induction components)exactly,directly from constitutive and geometrical equations.In addition,the very simple and elegant formulation permits having a code with very low computational costs.The present manuscript aims to fill the void in open literature regarding reference 3D solutions for the free vibration analysis of magneto-electro-elastic plates.展开更多
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalizat...1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalization of unsymmetric 2-CF_(3)-1,3-enynes.The presence of trifluoromethyl group is determinable for the regioselectivity.When the CF_(3) group was replaced with the methyl or amide group,the regioselectivity decreased to a ratio of 1.3:1 or 1:1.7,respectively.For alkyl substitutedβ-CF_(3)-1,3-enynes,a regiospecificity was obtained.This strategy features excellent regioselectivity,broad substrate scope and high functional group tolerance.Mechanistic studies showed that C–H bond activation is the rate-limiting step.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be effi...3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
Electrocatalytic water splitting coupled with sustainable energies is identified as an environmentally friendly and renewable strategy to generate high-quality hydrogen for the fuel cells.However,the main challenge is...Electrocatalytic water splitting coupled with sustainable energies is identified as an environmentally friendly and renewable strategy to generate high-quality hydrogen for the fuel cells.However,the main challenge is to develop high performance,low cost and chemically stable electrocatalysts to decline the energy barriers and enhance the sluggish kinetics of hydrogen evolution reaction(HER).Herein,a three-dimensional hierarchically ordered macroporous Ru-CoP@NC electrocatalyst(3DOM Ru-CoP@NC)derived from ordered macro-microporous metal-organic frameworks has been prepared using the precursor@template and double-solvent methods.The prepared 3DOM Ru-CoP@NC catalyst exhibits an overpotential of 15 mV(j=10 mA·cm^(-2))and a reaction Tafel slope of 38 mV·dec^(-1)in alkaline electrolyte,which are superior to commercial Pt@C catalyst.Additionally,the overpotential and reaction Tafel slope of this catalyst in acidic media are 45 mV and 50 mV·dec^(-1),respectively.The outstanding HER activities of 3DOM Ru-CoP@NC catalysts are ascribed to the 3D highly interconnectedreticular nanospaces that can increase effective reaction active sites.The N dope d carbon framework improves the electronic properties and conductivity.Moreover,the strong interaction of Ru and CoP nanoparticles also boosts the HER process.These results indicate that 3DOM Ru-CoP@NC catalysts with high catalytic activities have a broad application prospect in the future.展开更多
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica...Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.展开更多
A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analo...A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.展开更多
Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low tim...Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.展开更多
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172312 and 52211540395)support from the Institut Universitaire de France(IUF).
文摘The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
基金supported by the National Natural Science Foundation of China(Grant Nos.51890912,51979025 and 52011530189).
文摘This article presents a micro-structure tensor enhanced elasto-plastic finite element(FE)method to address strength anisotropy in three-dimensional(3D)soil slope stability analysis.The gravity increase method(GIM)is employed to analyze the stability of 3D anisotropic soil slopes.The accuracy of the proposed method is first verified against the data in the literature.We then simulate the 3D soil slope with a straight slope surface and the convex and concave slope surfaces with a 90turning corner to study the 3D effect on slope stability and the failure mechanism under anisotropy conditions.Based on our numerical results,the end effect significantly impacts the failure mechanism and safety factor.Anisotropy degree notably affects the safety factor,with higher degrees leading to deeper landslides.For concave slopes,they can be approximated by straight slopes with suitable boundary conditions to assess their stability.Furthermore,a case study of the Saint-Alban test embankment A in Quebec,Canada,is provided to demonstrate the applicability of the proposed FE model.
基金financially supported by the National Natural Science Foundation of China(No.41774125)Key Program of National Natural Science Foundation of China(No.41530320)+1 种基金the Key National Research Project of China(Nos.2016YFC0303100 and 2017YFC0601900)the Strategic Priority Research Program of Chinese Academy of Sciences Pilot Special(No.XDA 14020102)
文摘Traditional 3D Magnetotelluric(MT) forward modeling and inversions are mostly based on structured meshes that have limited accuracy when modeling undulating surfaces and arbitrary structures. By contrast, unstructured-grid-based methods can model complex underground structures with high accuracy and overcome the defects of traditional methods, such as the high computational cost for improving model accuracy and the difficulty of inverting with topography. In this paper, we used the limited-memory quasi-Newton(L-BFGS) method with an unstructured finite-element grid to perform 3D MT inversions. This method avoids explicitly calculating Hessian matrices, which greatly reduces the memory requirements. After the first iteration, the approximate inverse Hessian matrix well approximates the true one, and the Newton step(set to 1) can meet the sufficient descent condition. Only one calculation of the objective function and its gradient are needed for each iteration, which greatly improves its computational efficiency. This approach is well-suited for large-scale 3D MT inversions. We have tested our algorithm on data with and without topography, and the results matched the real models well. We can recommend performing inversions based on an unstructured finite-element method and the L-BFGS method for situations with topography and complex underground structures.
文摘This study proposes a three-dimensional(3D)coupled magneto-electro-elastic problem for the static analysis of multilayered plates embedding piezomagnetic and piezoelectric layers by considering both sensor and actuator configurations.The 3D governing equations for the magneto-electro-elastic static behavior of plates are explicitly show that are made by the three 3D equilibrium equations,the 3D divergence equation for magnetic induction,and the 3D divergence equation for the electric displacement.The proposed solution involves the exponential matrix in the thickness direction and primary variables’harmonic forms in the in-plane ones.A closed-form solution is performed considering simply-supported boundary conditions.Interlaminar continuity conditions are imposed for displacements,magnetic potential,electric potential,transverse shear/normal stresses,transverse normal magnetic induction and transverse normal electric displacement.Therefore,a layerwise approach is adopted.The results section is composed of an assessment part,where the present model is compared to past 3D electro-elastic or magneto-elastic formulations and a new benchmark part.Benchmarks consider sensor and actuator plate configurations for the fully coupled magneto-electro-elastic cases for different thickness ratios.Tabular and graphical results are presented for displacements,stresses,magnetic potential,electric potential,transverse normal magnetic induction and transverse normal electric displacement.For each presented benchmark,magneto-electro-elastic coupling and thickness and material layer effects are discussed in depth.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0451.
文摘Current developments in magnetohydrodynamic(MHD)convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems,particularly through the use of carbon nanotube(CNT)–based fluids that offer exceptional thermal conductivity.Despite extensive research on MHD natural convection in enclosures,the combined effects of complex obstacle geometries,magnetic fields,and CNT nanofluids in three-dimensional configurations remain insufficiently explored.This research investigates MHD natural convection of carbon nanotube(CNT)-water nanofluid within a three-dimensional cavity.The study considers an inclined cross-shaped hot obstacle,a configuration not extensively explored in previous works.The work aims to elucidate the combined effects of CNT nanofluid concentration,magnetic field strength,and obstacle inclination on fluid flow patterns and heat transfer characteristics.Numerical simulations are performed using the finite element method(FEM)based on the Galerkin Weighted Residual approach.The analysis systematically considers variations in Rayleigh number(Ra),Hartmann number(Ha),nanoparticle volume fraction(Φ),and obstacle inclination angle(θ).Results show that increasing Ra from 103 to 106 enhances convective heat transfer by up to 228%,while raising the CNT volume fraction to 4.5%improves heat transfer by about 64%.In contrast,strengthening the magnetic field from Ha=0 to Ha=100 suppresses fluid motion and reduces heat transfer by nearly 67%,whereas varying the obstacle inclination from 0○to 45○leads to a 4.6%decrease in efficiency.The addition of nanoparticles slightly increases viscosity,reducing flow intensity by 8.3%when Ha=0.Furthermore,a novel multiparametric correlation is proposed,accurately predicting the average Nusselt number as a function of Ra,Ha,ϕ,andθ,with an R2 of 0.98.These findings provide new insights into the role of geometry,magnetic effects,and nanofluids in heat transfer enhancement,offering practical guidance for the design and optimization of advanced thermal systems.
文摘A three-dimensional(3D)analytical formulation is proposed to put together magnetic,electric and elastic fields to analyze the vibration modes of simply-supported layered piezo-electro-magnetic plates.The present 3D model allows analyses for layered smart plates in both open-circuit and closed-circuit configurations.The secondorder differential equations written in the mixed curvilinear reference system govern the magneto-electro-elastic free vibration problem for multilayered plates.This set consists of the 3D equations of motion and the 3D divergence equations for the magnetic induction and electric displacement.Navier harmonic forms in the planar directions and the exponential matrix method in the transversal direction of the plate are applied to solve the second-order differential equations in terms of displacements.For these reasons,simply-supported boundary conditions are considered.Imposition of interlaminar continuity conditions on primary variables(displacements,magnetic potential,electric potential),and some secondary variables(transverse normal and transverse shear stresses,transverse normal magnetic induction/electric displacement)allows the implementation of the layer-wise approach.Assessments for both load boundary configurations are proposed in the results section to validate the present 3D approach.3D electro-elastic and 3D magneto-elastic coupling validations are performed separately considering different models from the open literature.A new benchmark involving a full magneto-electro-elastic coupling for multilayered plates is presented considering both load boundary configurations for different thickness ratios.For this benchmark,circular frequency values and related vibration modes through the transverse direction in terms of displacements,magnetic and electric potential,transverse normal magnetic induction/electric displacement are shown to visualize the magneto-electroelastic coupling and material and thickness layer effects.The present formulation has been entirely implemented in an academic Matlab(R2024a)code developed by the authors.In this paper,for the first time,the second-order differential equations governing the magneto-electro-elastic problem for the free vibration analysis of plates has been solved considering the mixed mode of harmonic forms and exponential matrix.The exponential matrix permits computing the secondary variable of the problem(stresses,electric displacement components and magnetic induction components)exactly,directly from constitutive and geometrical equations.In addition,the very simple and elegant formulation permits having a code with very low computational costs.The present manuscript aims to fill the void in open literature regarding reference 3D solutions for the free vibration analysis of magneto-electro-elastic plates.
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
基金supported by National Natural Science Founda:tion of China(22461002,22308061,22305046)Natural Science Foundation(NSF)of Jiangxi Province(20224BAB213011,20242BAB20110,20224BAB213012)+1 种基金High-Level and Highly Demanded Overseas Talent Programs of Jiangxi Province(20232BCJ25050)Gannan Normal University Start-up Fund(BSJJ202109).
文摘1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalization of unsymmetric 2-CF_(3)-1,3-enynes.The presence of trifluoromethyl group is determinable for the regioselectivity.When the CF_(3) group was replaced with the methyl or amide group,the regioselectivity decreased to a ratio of 1.3:1 or 1:1.7,respectively.For alkyl substitutedβ-CF_(3)-1,3-enynes,a regiospecificity was obtained.This strategy features excellent regioselectivity,broad substrate scope and high functional group tolerance.Mechanistic studies showed that C–H bond activation is the rate-limiting step.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金supported by NSFC(Nos.41274120,41404085,and 41504084)
文摘3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20237,52371218,51863005,52271205,51871065,51971068and52101245)the Scientific Research and Technology Development Program of Guangxi(Nos.AA19182014,AD 17195073,AA17202030-1,AB21220027 and 2021AB17045)+6 种基金the National Natural Science Foundation of Guangxi Province(Nos.2021GXNSFBA075057,2018GXNSFDA281051,2014GXNSFAA118401 and 2013GXNSFBA019244)the Scientific Research and Technology Development Program of Guilin(Nos.20210102-4 and 20210216-1)Guangxi Bagui Scholar FoundationGuilin Lijiang Scholar FoundationGuangxi Collaborative Innovation Centre of Structure and Property for New Energy and MaterialsGuangxi Advanced Functional Materials FoundationApplication Talents Small Highlands and Chinesisch-Deutsche Kooperationsgruppe(No.GZ1528)。
文摘Electrocatalytic water splitting coupled with sustainable energies is identified as an environmentally friendly and renewable strategy to generate high-quality hydrogen for the fuel cells.However,the main challenge is to develop high performance,low cost and chemically stable electrocatalysts to decline the energy barriers and enhance the sluggish kinetics of hydrogen evolution reaction(HER).Herein,a three-dimensional hierarchically ordered macroporous Ru-CoP@NC electrocatalyst(3DOM Ru-CoP@NC)derived from ordered macro-microporous metal-organic frameworks has been prepared using the precursor@template and double-solvent methods.The prepared 3DOM Ru-CoP@NC catalyst exhibits an overpotential of 15 mV(j=10 mA·cm^(-2))and a reaction Tafel slope of 38 mV·dec^(-1)in alkaline electrolyte,which are superior to commercial Pt@C catalyst.Additionally,the overpotential and reaction Tafel slope of this catalyst in acidic media are 45 mV and 50 mV·dec^(-1),respectively.The outstanding HER activities of 3DOM Ru-CoP@NC catalysts are ascribed to the 3D highly interconnectedreticular nanospaces that can increase effective reaction active sites.The N dope d carbon framework improves the electronic properties and conductivity.Moreover,the strong interaction of Ru and CoP nanoparticles also boosts the HER process.These results indicate that 3DOM Ru-CoP@NC catalysts with high catalytic activities have a broad application prospect in the future.
基金Nanning Technology and Innovation Special Program(20204122)and Research Grant for 100 Talents of Guangxi Plan.
文摘Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.
基金supported by the National Natural Science Foundation of China (11172192)the College Postgraduate Research and Innovation Project of Jiangsu province (CXZZ12 0803)
文摘A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.
基金supported by National Natural Science Foundation of China(Grant No. 51175287)National Science and Technology Major Project(Grant No. 2011ZX02403)
文摘Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.