Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of W...Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of WAAM processes,which involves intricate thermal dynamics,phase transitions,and metallurgical,mechanical,and chemical interactions,presents considerable challenges in final product qualities.Simulation technologies in WAAM have proven invaluable,providing accurate predictions in key areas such as material properties,defect identification,deposit morphology,and residual stress.These predictions play a critical role in optimising manufacturing strategies for the final product.This paper provides a comprehensive review of the simulation techniques applied in WAAM,tracing developments from 2013 to 2023.Initially,it analyses the current challenges faced by simulation methods in three main areas.Subsequently,the review explores the current modelling approaches and the applications of these simulations.Following this,the paper discusses the present state of WAAM simulation,identifying specific issues inherent to WAAM simulation itself.Finally,through a thorough review of existing literature and related analysis,the paper offers future perspectives on potential advancements in WAAM simulation strategies.展开更多
In order to efficiently and realistically capture microscopic features of fluid surface,a fast and stable surface feature simulation approach for particle-based fluids is presented in this paper.This method employs a ...In order to efficiently and realistically capture microscopic features of fluid surface,a fast and stable surface feature simulation approach for particle-based fluids is presented in this paper.This method employs a steady tension and adhesion model to construct surface features with the consideration of the adsorption effect of fluid to solid.Molecular cohesion and surface area minimization are appended for surface tension,and adhesion is added to better show the microscopic characteristics of fluid surface.Besides,the model is integrated to an implicit incompressible smoothed particle hydrodynamics(SPH)method to improve the efficiency and stability of simulation.The experimental results demonstrate that the method can better simulates surface features in a variety of scenarios stably and efficiently.展开更多
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method...This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.展开更多
Modeling has become phenomenal in developing new products.In the case of filters,one of the mos applied procedures is via the construction of idealized physical computational models bearing close semblance to real fil...Modeling has become phenomenal in developing new products.In the case of filters,one of the mos applied procedures is via the construction of idealized physical computational models bearing close semblance to real filter media.It is upon these that multi-physics tools were applied to analvze the fow of fuid and the resulting typical performance parameters.In this work,two 3D filter membranes were constructed with MATLAB:one had a random distribution of unimodal nanofibers,and the other,a novel modification,formed.a bimodal distribution:both of them had similar dimensions and solid volume fractions.A comparison of their performance in a dust-loading environment was made by using computational fluid dynamic-discrete elemen method(CED-DEM)coupling technique in STAR-CCM+.It was found that the bimodal nanofiber membrane greatly improved the particle capture efficiencv.Whereas this increased the pressure drop,the gain was not toosignificant.Thus.overall,the results of the figure of merit ptoved that adopting a bimodal formation improved the filter's quality.展开更多
The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is...The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.展开更多
Evaluation and prediction of the long-term behavior of abandoned mines have to consider complex interactions of different physical processes.The hydro-mechanical coupling plays an important role for potential short-an...Evaluation and prediction of the long-term behavior of abandoned mines have to consider complex interactions of different physical processes.The hydro-mechanical coupling plays an important role for potential short-and long-term environmental risks(e.g.surface subsidence,pollution of the biosphere,damage of the geological barrier,damage of groundwater regime).This work addresses challenges and key mechanisms in respect to longterm predictions for abandoned salt and potash mines and provides a general simulation concept.Exemplary,this concept is applied to a generic salt mine model characterized by hydro-mechanical coupling and visco-elasto as well as elasto-plastic material behavior.The concept considers time-depending rock mass and backfill material behavior.Long-lasting and large-scale fluid flow within solution-filled and backfilled cavities as well as a cavern due to creep induced convergence is simulated.A new coupling scheme between the numerical codes FLAC3D and Ansys Fluent is developed and employed for this purpose giving plausible and accurate results by efficient simulation duration.The presented workflow provides a step-by-step overview for assessing long-term safety of abandoned mines,starting with indication of main aspects determining the geomechanical and hydraulic pro-cesses followed by the exemplary model set-up,the choice of constitutive models,the simplification of the modelled mining process,the model calibration and the interpretation of the numerical results.Different model scenarios in respect to initial fluid saturation are simulated considering a partially saturated mine and a fully saturated mine,which leads to free fluid surface evolution up to the generation of excess of fluid pressure.展开更多
Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework...Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.展开更多
基金supported in part by China Scholarship Council under Grant 202208200010。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising technique for producing large-scale metal components,favoured by high deposition rates,flexibility and low cost.Despite its potential,the complexity of WAAM processes,which involves intricate thermal dynamics,phase transitions,and metallurgical,mechanical,and chemical interactions,presents considerable challenges in final product qualities.Simulation technologies in WAAM have proven invaluable,providing accurate predictions in key areas such as material properties,defect identification,deposit morphology,and residual stress.These predictions play a critical role in optimising manufacturing strategies for the final product.This paper provides a comprehensive review of the simulation techniques applied in WAAM,tracing developments from 2013 to 2023.Initially,it analyses the current challenges faced by simulation methods in three main areas.Subsequently,the review explores the current modelling approaches and the applications of these simulations.Following this,the paper discusses the present state of WAAM simulation,identifying specific issues inherent to WAAM simulation itself.Finally,through a thorough review of existing literature and related analysis,the paper offers future perspectives on potential advancements in WAAM simulation strategies.
基金Supported by the National Natural Science Foundation of China(61873299,61702036,61572075)Fundamental Research Funds for the Central Universities of China(FRF-TP-17-012A1)China Postdoctoral Science Foundation(2017M620619)
文摘In order to efficiently and realistically capture microscopic features of fluid surface,a fast and stable surface feature simulation approach for particle-based fluids is presented in this paper.This method employs a steady tension and adhesion model to construct surface features with the consideration of the adsorption effect of fluid to solid.Molecular cohesion and surface area minimization are appended for surface tension,and adhesion is added to better show the microscopic characteristics of fluid surface.Besides,the model is integrated to an implicit incompressible smoothed particle hydrodynamics(SPH)method to improve the efficiency and stability of simulation.The experimental results demonstrate that the method can better simulates surface features in a variety of scenarios stably and efficiently.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 11302057, 11302056), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF140115) and the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310).
文摘This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.
基金the Chang Jiang Youth Scholars Program of China(No.51773037)the National Natural Science Foundation of China(Nos.51803023 and 61771123)+2 种基金the Shanghai Sailing Program(No.18YF1400400)the China Postdoctoral Science Foundation(No.2018M640317)the Fundamental Hesearch Funds for the Central Universities(No.2232018A3-11)。
文摘Modeling has become phenomenal in developing new products.In the case of filters,one of the mos applied procedures is via the construction of idealized physical computational models bearing close semblance to real filter media.It is upon these that multi-physics tools were applied to analvze the fow of fuid and the resulting typical performance parameters.In this work,two 3D filter membranes were constructed with MATLAB:one had a random distribution of unimodal nanofibers,and the other,a novel modification,formed.a bimodal distribution:both of them had similar dimensions and solid volume fractions.A comparison of their performance in a dust-loading environment was made by using computational fluid dynamic-discrete elemen method(CED-DEM)coupling technique in STAR-CCM+.It was found that the bimodal nanofiber membrane greatly improved the particle capture efficiencv.Whereas this increased the pressure drop,the gain was not toosignificant.Thus.overall,the results of the figure of merit ptoved that adopting a bimodal formation improved the filter's quality.
文摘The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.
文摘Evaluation and prediction of the long-term behavior of abandoned mines have to consider complex interactions of different physical processes.The hydro-mechanical coupling plays an important role for potential short-and long-term environmental risks(e.g.surface subsidence,pollution of the biosphere,damage of the geological barrier,damage of groundwater regime).This work addresses challenges and key mechanisms in respect to longterm predictions for abandoned salt and potash mines and provides a general simulation concept.Exemplary,this concept is applied to a generic salt mine model characterized by hydro-mechanical coupling and visco-elasto as well as elasto-plastic material behavior.The concept considers time-depending rock mass and backfill material behavior.Long-lasting and large-scale fluid flow within solution-filled and backfilled cavities as well as a cavern due to creep induced convergence is simulated.A new coupling scheme between the numerical codes FLAC3D and Ansys Fluent is developed and employed for this purpose giving plausible and accurate results by efficient simulation duration.The presented workflow provides a step-by-step overview for assessing long-term safety of abandoned mines,starting with indication of main aspects determining the geomechanical and hydraulic pro-cesses followed by the exemplary model set-up,the choice of constitutive models,the simplification of the modelled mining process,the model calibration and the interpretation of the numerical results.Different model scenarios in respect to initial fluid saturation are simulated considering a partially saturated mine and a fully saturated mine,which leads to free fluid surface evolution up to the generation of excess of fluid pressure.
基金the financial support by the National Natural Science Foundation of China (Grant No. 51490673)the Open Awards of the State Key Laboratory of Coastal and Offshore Engineering+1 种基金funded by the EPSRC MEMPHIS multiphase Programme (Grant No. EP/K003976/1)funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement No. 603663 for the research project PEARL (Preparing for Extreme and Rare events in coasta L regions)
文摘Wave breaking plays an important role in wave-structure interaction. A novel control volume finite element method with adaptive unstructured meshes is employed here to study 3-D breaking waves. The numerical framework consists of a "volume of fluid" type method for the interface capturing and adaptive unstructured meshes to improve computational efficiency. The numerical model is validated against experimental measurements of breaking wave over a sloping beach and is then used to study the breaking wave impact on a vertical circular cylinder on a slope. Detailed complex interfacial structures during wave impact, such as plunging jet formation and splash-up are captured in the simulation, demonstrating the capability of the present method.