In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the...In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.展开更多
In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfa...In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.展开更多
文摘In the construction and maintenance of particle accelerators,all the accelerator elements should be installed in the same coordinate system,only in this way could the devices in the actual world be consistent with the design drawings.However,with the occurrence of the movements of the reinforced concrete cover plates at short notice or building deformations in the long term,the control points upon the engineering structure will be displaced,and the fitness between the subnetwork and the global control network may be irresponsible.Therefore,it is necessary to evaluate the deformations of the 3D alignment control network.Different from the extant investigations,in this paper,to characterize the deformations of the control network,all of the congruent models between the points measured in different epochs have been identified,and the congruence model with the most control points is considered as the primary or fundamental model,the remaining models are recognized as the additional ones.Furthermore,the discrepancies between the primary S-transformation parameters and the additional S-transformation parameters can reflect the relative movements of the additional congruence models.Both the iterative GCT method and the iterative combinatorial theory are proposed to detect multiple congruence models in the control network.Considering the actual work of the alignment,it is essential to identify the competitive models in the monitoring network,which can provide us a hint that,even the fitness between the subnetwork and the global control network is good,there are still deformations which may be ignored.The numerical experiments show that the suggested approaches can describe the deformation of the 3D alignment control network roundly.
文摘In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising.