Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precurs...Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found im...Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.展开更多
Previous air pollution control strategies didn’t pay enough attention to regional collaboration and the spatial response sensitivities,resulting in limited control effects in China.This study proposed an effective PM...Previous air pollution control strategies didn’t pay enough attention to regional collaboration and the spatial response sensitivities,resulting in limited control effects in China.This study proposed an effective PM_(2.5)and O_(3) control strategy scheme with the integration of Self-Organizing Map(SOM),Genetic Algorithm(GA)and WRF-CAMx,emphasizing regional collaborative control and the strengthening of control in sensitive areas.This scheme embodies the idea of hierarchical management and spatial-temporally differentiated management,with SOM identifying the collaborative subregions,GA providing the optimized subregion-level priority of precursor emission reductions,and WRF-CAMx providing response sensitivities for grid-level priority of precursor emission reductions.With Beijing-Tianjin-Hebei and the surrounding area(BTHSA,“2+26”cities)as the case study area,the optimized strategy required that regions along Taihang Mountains strengthen the emission reductions of all precursors in PM_(2.5)-dominant seasons,and strengthen VOCs reductions but moderate NOx reductions in O_(3)-dominant season.The spatiotemporally differentiated control strategy,without additional emission reduction burdens than the 14th Five-Year Plan proposed,reduced the average annual PM_(2.5)and MDA8 O_(3) concentrations in 28 cities by 3.2%-8.2% and 3.9%-9.7% respectively in comparison with non-differential control strategies,with the most prominent optimization effects occurring in the heavily polluted seasons(6.9%-18.0%for PM_(2.5)and 3.3%-14.2% for MDA8 O_(3),respectively).This study proposed an effective scheme for the collaborative control of PM_(2.5)and O_(3) in BTHSA,and shows important methodological implications for other regions suffering from similar air quality problems.展开更多
The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a s...The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.展开更多
In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuz...In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforce...Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.展开更多
This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorp...This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorporating flexible appendages and an orthogonal cluster of magnetically suspended reaction wheel actuators is initially developed.After that,an adaptive attitude controller is designed with a switching surface of variable structure,an adaptive law for estimating inertia matrix uncertainty,and a fuzzy disturbance observer for estimating disturbance torques.Additionally,a Moore-Penrose-based steering law is proposed to derive the tilt angle commands of the orthogonal configuration of the 3D MSW to follow the designed control signal.Finally,numerical simulations are presented to validate the effectiveness of the proposed control strategy.展开更多
The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these st...The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these structures are prone to varying degrees of damage,with frequent occurrences of roof leakage and induced rock burst accidents,significantly impacting subsequent mining operations and safe production.To address these issues,this study investigates the surrounding rock deformation patterns during fully mechanized mining face passage through abandoned roadway clusters.Specific countermeasures were systematically summarized according to different occurrence characteristics of abandoned roadways.Through mechanical analysis,the critical unstable width of coal pillars was determined to be approximately 16.1~16.8 m.A three-dimensional numerical model was established based on 17 abandoned roadways with various shapes and occurrences in the working face.Simulation results indicate severe deformation and failure in roof rock layer roadways,while floor roadways exhibit relatively minor damage.Notably,when the distance between abandoned roadways and the coal seam exceeds 8 m,almost no damage occurs.Three technical measures for passing through abandoned roadway group was proposed according to their occurrence characteristics and implemented in engineering practice.Field applications demonstrate limited coal stress variations and weak strata pressure manifestations during the crossing process,ensuring safe passage through abandoned roadway clusters.This achievement enables efficient and safe crossing of abandoned roadway group in fully mechanized mining faces,enhances coal recovery rates,and provides practical engineering references for similar geological conditions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42005086,91844301,and 41805100)the National Key Research and Development Programof China(No.2022YFC3703500)+2 种基金China Postdoctoral Science Foundation(No.2023M733028)the Key Research and Development Program of Zhejiang Province(Nos.2021C03165 and 2022C03084)the Ecological and Environmental Scientific Research and Achievement Promotion Project of Zhejiang Province(No.2020HT0048).
文摘Assessing the impact of anthropogenic volatile organic compounds(VOCs)on ozone(O_(3))formation is vital for themanagement of emission reduction and pollution control.Continuousmeasurement of O_(3)and the major precursorswas conducted in a typical light industrial city in the YRD region from 1 May to 25 July in 2021.Alkanes were the most abundant VOC group,contributing to 55.0%of TVOCs concentration(56.43±21.10 ppb).OVOCs,aromatics,halides,alkenes,and alkynes contributed 18.7%,9.6%,9.3%,5.2%and 1.9%,respectively.The observational site shifted from a typical VOC control regime to a mixed regime from May to July,which can be explained by the significant increase of RO_(x)production,resulting in the transition of environment from NOx saturation to radical saturation with respect to O_(3)production.The optimal O_(3)control strategy should be dynamically changed depending on the transition of control regime.Under NOx saturation condition,minimizing the proportion of NOx in reduction could lead to better achievement of O_(3)alleviation.Under mixed control regime,the cut percentage gets the top priority for the effectiveness of O_(3)control.Five VOCs sources were identified:temperature dependent source(28.1%),vehicular exhausts(19.9%),petrochemical industries(7.2%),solvent&gasoline usage(32.3%)and manufacturing industries(12.6%).The increase of temperature and radiation would enhance the evaporation related VOC emissions,resulting in the increase of VOC concentration and the change of RO_(x)circulation.Our results highlight determination of the optimal control strategies for O_(3)pollution in a typical YRD industrial city.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
文摘Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.
基金supported by the National Natural Science Foundation of China(Nos.51638001,52000005)。
文摘Previous air pollution control strategies didn’t pay enough attention to regional collaboration and the spatial response sensitivities,resulting in limited control effects in China.This study proposed an effective PM_(2.5)and O_(3) control strategy scheme with the integration of Self-Organizing Map(SOM),Genetic Algorithm(GA)and WRF-CAMx,emphasizing regional collaborative control and the strengthening of control in sensitive areas.This scheme embodies the idea of hierarchical management and spatial-temporally differentiated management,with SOM identifying the collaborative subregions,GA providing the optimized subregion-level priority of precursor emission reductions,and WRF-CAMx providing response sensitivities for grid-level priority of precursor emission reductions.With Beijing-Tianjin-Hebei and the surrounding area(BTHSA,“2+26”cities)as the case study area,the optimized strategy required that regions along Taihang Mountains strengthen the emission reductions of all precursors in PM_(2.5)-dominant seasons,and strengthen VOCs reductions but moderate NOx reductions in O_(3)-dominant season.The spatiotemporally differentiated control strategy,without additional emission reduction burdens than the 14th Five-Year Plan proposed,reduced the average annual PM_(2.5)and MDA8 O_(3) concentrations in 28 cities by 3.2%-8.2% and 3.9%-9.7% respectively in comparison with non-differential control strategies,with the most prominent optimization effects occurring in the heavily polluted seasons(6.9%-18.0%for PM_(2.5)and 3.3%-14.2% for MDA8 O_(3),respectively).This study proposed an effective scheme for the collaborative control of PM_(2.5)and O_(3) in BTHSA,and shows important methodological implications for other regions suffering from similar air quality problems.
基金supported by the National Natural Science Foundation of China(22006044,22006043)External Cooperation Program of Science and Technology Planning of Fujian Province(2023I0018)+2 种基金the Fujian Province Science and Technology Program Funds(2020H6013)the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A03)the Scientific Research Funds of Huaqiao University(605-50Y200270001)。
文摘The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.
基金CONAHCYTTecnológico Nacional de Mexico/Tijuana Institute of Technology for the support during this research
文摘In this paper,we offer a review of type-3 fuzzy logic systems and their applications in control.The main objective of this work is to observe and analyze in detail the applications in the control area using type-3 fuzzy logic systems.In this case,we review their most important applications in control and other related topics with type-3 fuzzy systems.Intelligent algorithms have been receiving increasing attention in control and for this reason a review in this area is important.This paper reviews the main applications that make use of Intelligent Computing methods.Specifically,type-3 fuzzy logic systems.The aim of this research is to be able to appreciate,in detail,the applications in control systems and to point out the scientific trends in the use of Intelligent Computing techniques.This is done with the construction and visualization of bibliometric networks,developed with VosViewer Software,which it is a free Java-based program,mainly intended to be used for analyzing and visualizing bibliometric networks.With this tool,we can create maps of publications,authors,or journals based on a co-citation network or construct maps of keywords,countries based on a co-occurrence networks,research groups,etc.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the National Natural Science Foundation of China(Grant No.52106089)the National Key R&D Project from Ministry of Science and Technology of China(Grant No.2022YFA1203100)。
文摘Filler-reinforced polymer composites demonstrate pervasive applications due to their strengthened performances,multi-degree tunability,and ease of manufacturing.In thermal management field,polymer composites reinforced with thermally conductive fillers are widely adopted as thermal interface materials(TIMs).However,the three dimensional(3D)-stacked heterogenous integration of electronic devices has posed the problem that high-density heat sources are spatially distributed in the package.This situation puts forward new requirements for TIMs,where efficient heat dissipation channels must be established according to the specific distribution of discrete heat sources.To address this challenge,a 3D printing-assisted streamline orientation(3D-PSO)method was proposed to fabricate composite thermal materials with 3D programmable microstructures and orientations of fillers,which combines the shape-design capability of 3D printing and oriented control ability of fluid.The mechanism of fluid-based filler orientation control along streamlines was revealed by mechanical analysis of fillers in matrix.Thanks to the designed heat dissipation channels,composites showed better thermal and mechanical properties in comparison to random composites.Specifically,the thermal conductivity of 3D mesh-shape polydimethylsiloxane/liquid metal(PDMS/LM)composite was5.8 times that of random PDMS/LM composite under filler loading of 34.8 vol%.The thermal conductivity enhancement efficiency of 3D mesh-shape PDMS/carbon fibers composite reached101.05%under filler loading of 5.2 vol%.In the heat dissipation application of 3D-stacked chips,the highest chip temperature with 3D-PSO composite was 42.14℃lower than that with random composites.This is mainly attributed to the locally aggregated and oriented fillers'microstructure in fluid channels,which contributes to thermal percolation phenomena.The3D-PSO method exhibits excellent programmable design capabilities to adopt versatile distributions of heat sources,paving a new way to solve the complicated heat dissipation issue in 3D-stacked chips integration application.
基金Project supported by the National Natural Science Foundation of China(Nos.W2433004 and 12472015)the Research Fund of the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and Astronautics)(No.MCMS-I-0122K01).
文摘This paper proposes an attitude control strategy for a flexible satellite equipped with an orthogonal cluster of three-dimensional(3D)magnetically suspended wheels(MSWs).The mathematical model for the satellite incorporating flexible appendages and an orthogonal cluster of magnetically suspended reaction wheel actuators is initially developed.After that,an adaptive attitude controller is designed with a switching surface of variable structure,an adaptive law for estimating inertia matrix uncertainty,and a fuzzy disturbance observer for estimating disturbance torques.Additionally,a Moore-Penrose-based steering law is proposed to derive the tilt angle commands of the orthogonal configuration of the 3D MSW to follow the designed control signal.Finally,numerical simulations are presented to validate the effectiveness of the proposed control strategy.
基金supported by the National Key R&D Program of China(2023YFC3904300)the Taichuangyuan Thick Coal Seam Water Conservation Mining"Scientists+Engineers"Team(2024QCY-KXJ-055)the 111 Project(B21016).
文摘The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these structures are prone to varying degrees of damage,with frequent occurrences of roof leakage and induced rock burst accidents,significantly impacting subsequent mining operations and safe production.To address these issues,this study investigates the surrounding rock deformation patterns during fully mechanized mining face passage through abandoned roadway clusters.Specific countermeasures were systematically summarized according to different occurrence characteristics of abandoned roadways.Through mechanical analysis,the critical unstable width of coal pillars was determined to be approximately 16.1~16.8 m.A three-dimensional numerical model was established based on 17 abandoned roadways with various shapes and occurrences in the working face.Simulation results indicate severe deformation and failure in roof rock layer roadways,while floor roadways exhibit relatively minor damage.Notably,when the distance between abandoned roadways and the coal seam exceeds 8 m,almost no damage occurs.Three technical measures for passing through abandoned roadway group was proposed according to their occurrence characteristics and implemented in engineering practice.Field applications demonstrate limited coal stress variations and weak strata pressure manifestations during the crossing process,ensuring safe passage through abandoned roadway clusters.This achievement enables efficient and safe crossing of abandoned roadway group in fully mechanized mining faces,enhances coal recovery rates,and provides practical engineering references for similar geological conditions.