This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized ...This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.展开更多
(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to singl...(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.展开更多
The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surf...The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .展开更多
Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso...Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.展开更多
In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by explo...In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by exploiting the 2-D effective methods in 3-D. This method can change the constrained optimization algorithm into the unconstrained one and makes the design easier to realize. The second method is to solve the coupled equations under constrained conditions and a set of ideal parameters can be gotten. The design example shows that the two methods are all efficient and easier than the original algorithm.展开更多
This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. Af...This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.展开更多
The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT)...The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.展开更多
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul...A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.展开更多
The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is abl...The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.展开更多
A 3-Dimensional computer aided garment design (CAGD) system has been developed andimplemented on a high-performance workstation. We studied various approaches to the func-tional modelling of garment designs for the sy...A 3-Dimensional computer aided garment design (CAGD) system has been developed andimplemented on a high-performance workstation. We studied various approaches to the func-tional modelling of garment designs for the system. According to the characteristic data of a hu-man body, the models of human body and the garment are displayed on the screen, then we canmodify the garment with various styles and different sizes. The system can transform the 3-Dgarment to the 2-D pieces. The system has improved design efficiency. Various potential alterna-tives and improvement of the system have also been studied and explored.展开更多
Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier tran...Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier transformed domain. A global matrix of layered soil can be obtained by assembling a set of analytical layer-elements, which is further solved in the transformed domain by considering boundary conditions. The numerical inversion of LaplaceFourier trans- form is employed to acquire the actual solution. Numerical analysis for 3-D consolidation with anisotropic permeability of a layered soil system is presented, and the influence of anisotropy of permeability on the consolidation behavior is discussed.展开更多
This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we...This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we design a novel on-chip processing flow with die-to-die image transmission and low-latency fixed-point image processing.The vision chip achieves real-time end-to-end processing of convolutional neural networks(CNNs)and conventional image processing algo-rithms.Furthermore,an end-to-end 2D/3D vision system is built to exhibit the capacity of the vision chip.The vision system achieves real-timing applications under 2D and 3D scenes,such as human face detection(processing delay 10.2 ms)and depth map reconstruction(processing delay 4.1 ms).The frame rate of image acquisition,image process,and result display is larger than 30 fps.展开更多
Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aero...Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.展开更多
Recently,securing Copyright has become a hot research topic due to rapidly advancing information technology.As a host cover,watermarking methods are used to conceal or embed sensitive information messages in such a ma...Recently,securing Copyright has become a hot research topic due to rapidly advancing information technology.As a host cover,watermarking methods are used to conceal or embed sensitive information messages in such a manner that it was undetectable to a human observer in contemporary times.Digital media covers may often take any form,including audio,video,photos,even DNA data sequences.In this work,we present a new methodology for watermarking to hide secret data into 3-D objects.The technique of blind extraction based on reversing the steps of the data embedding process is used.The implemented technique uses the features of the 3-D object vertex’discrete cosine transform to embed a grayscale image with high capacity.The coefficient of vertex and the encrypted picture pixels are used in the watermarking procedure.Additionally,the extraction approach is fully blind and is dependent on the backward steps of the encoding procedure to get the hidden data.Correlation distance,Euclidean distance,Manhattan distance,and the Cosine distance are used to evaluate and test the performance of the proposed approach.The visibility and imperceptibility of the proposed method are assessed to show the efficiency of our work compared to previous corresponding methods.展开更多
文摘This paper presents an optimized 3-D Discrete Wavelet Transform (3-DDWT) architecture. 1-DDWT employed for the design of 3-DDWT architecture uses reduced lifting scheme approach. Further the architecture is optimized by applying block enabling technique, scaling, and rounding of the filter coefficients. The proposed architecture uses biorthogonal (9/7) wavelet filter. The architecture is modeled using Verilog HDL, simulated using ModelSim, synthesized using Xilinx ISE and finally implemented on Virtex-5 FPGA. The proposed 3-DDWT architecture has slice register utilization of 5%, operating frequency of 396 MHz and a power consumption of 0.45 W.
基金financially supported by the National Natural Science Foundation of China(Grant No.51901011)the National Science and Technology Major Project(Grant Nos.2017-Ⅵ-0002-0072 and 2017-VII-0007-0100)+1 种基金the Fundamental Research Funds for Central Universities(Grant No.YWF-21-BJ-J-1034)the support from Youth Talent Support Program of Beihang University。
文摘(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.
文摘The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .
文摘Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.
文摘In the design of 3-D spherically symmetric FIR filters via the McClellan transformation, two methods are proposed to determine the transformation parameters. The first is to improve the original 3-D algorithm by exploiting the 2-D effective methods in 3-D. This method can change the constrained optimization algorithm into the unconstrained one and makes the design easier to realize. The second method is to solve the coupled equations under constrained conditions and a set of ideal parameters can be gotten. The design example shows that the two methods are all efficient and easier than the original algorithm.
文摘This paper presents an algorithm for coding video signal based on 3-D wavelet transformation. When the frame order t of a video signal is replaced by order 2, the video signal can be looked as a block in 3-D space. After splitting the block into smaller sub-blocks, imitate the method of 2-D wavelet transformation for images, we can transform the sub-blocks with 3-D wavelet. Most of video signal energy is in the decomposed low-frequency sub-bands. These sub-bands affect the visual quality of the video signal most. Quantizing different sub-bands with different precision and then entropy encoding each sub-band, we can eliminate inter- and intra-frame redundancy of the video signal and compress data. Our simulation experiments show that this algorithm can achieve very good result.
基金National High Technology Research and Development Program (863 Program) of China (No. 2010AA09Z104)the Fundamental Research Funds for the Central Universities
文摘The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.
文摘A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.
文摘The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.
文摘A 3-Dimensional computer aided garment design (CAGD) system has been developed andimplemented on a high-performance workstation. We studied various approaches to the func-tional modelling of garment designs for the system. According to the characteristic data of a hu-man body, the models of human body and the garment are displayed on the screen, then we canmodify the garment with various styles and different sizes. The system can transform the 3-Dgarment to the 2-D pieces. The system has improved design efficiency. Various potential alterna-tives and improvement of the system have also been studied and explored.
基金Project supported by the National Natural Science Foundation of China (No. 50578121)
文摘Starting with governing equations of a saturated soil with anisotropic permeability and based on multiple integral transforms, an analytical layer-element equation is established explicitly in the Laplace-Fourier transformed domain. A global matrix of layered soil can be obtained by assembling a set of analytical layer-elements, which is further solved in the transformed domain by considering boundary conditions. The numerical inversion of LaplaceFourier trans- form is employed to acquire the actual solution. Numerical analysis for 3-D consolidation with anisotropic permeability of a layered soil system is presented, and the influence of anisotropy of permeability on the consolidation behavior is discussed.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFB2204300)in part by the National Natural Science Foundation of China(Grant Nos.62334008 and 62274154)in part by the Key Program of National Natural Science Foundation of China(Grant No.62134004).
文摘This paper describes a 2D/3D vision chip with integrated sensing and processing capabilities.The 2D/3D vision chip architecture includes a 2D/3D image sensor and a programmable visual processor.In this architecture,we design a novel on-chip processing flow with die-to-die image transmission and low-latency fixed-point image processing.The vision chip achieves real-time end-to-end processing of convolutional neural networks(CNNs)and conventional image processing algo-rithms.Furthermore,an end-to-end 2D/3D vision system is built to exhibit the capacity of the vision chip.The vision system achieves real-timing applications under 2D and 3D scenes,such as human face detection(processing delay 10.2 ms)and depth map reconstruction(processing delay 4.1 ms).The frame rate of image acquisition,image process,and result display is larger than 30 fps.
文摘Mg-alloys have gained considerable attention in recent years for their outstanding properties such as lightweight,high specific strength,and corrosion resistance,making them attractive for applications in medical,aerospace,automotive,and other transport industries.However,their widespread application is hindered by their low formability at room temperature due to limited slip systems.Cast Mg-alloys have low mechanical properties due to the presence of casting defects such as porosity and anisotropy in addition to the high scrap.While casting methods benefit from established process optimization techniques for these problems,additive manufacturing methods are increasingly replacing casting methods in Mg alloys as they provide more precise control over the microstructure and allow specific grain orientations,potentially enabling easier optimization of anisotropy properties in certain applications.Although metal additive manufacturing(MAM)technology also results in some manufacturing defects such as inhomogeneous microstructural evolution and porosity and additively manufactured Mg alloy parts exhibit lower properties than the wrought parts,they in general exhibit superior properties than the cast counterparts.Thus,MAM is a promising technique to produce Mg alloy parts.Directed energy deposition processes,particularly wire arc directed energy deposition(WA-DED),have emerged as an advantageous additive manufacturing(AM)technique for metallic materials including magnesium alloys,offering advantages such as high deposition rates,improved material efficiency,and reduced production costs compared to subtractive processes.However,the inherent challenges associated with magnesium,such as its high reactivity and susceptibility to oxidation,pose unique hurdles in the application of this technology.This review paper delves into the progress made in the application of DED technology to Mg-alloys,its challenges,and prospects.Furthermore,the predominant imperfections,notably inhomogeneous microstructure evolution and porosity,observed in Mg-alloy components manufactured through DED are discussed.Additionally,the preventive measures implemented to counteract the formation of these defects are explored.
文摘Recently,securing Copyright has become a hot research topic due to rapidly advancing information technology.As a host cover,watermarking methods are used to conceal or embed sensitive information messages in such a manner that it was undetectable to a human observer in contemporary times.Digital media covers may often take any form,including audio,video,photos,even DNA data sequences.In this work,we present a new methodology for watermarking to hide secret data into 3-D objects.The technique of blind extraction based on reversing the steps of the data embedding process is used.The implemented technique uses the features of the 3-D object vertex’discrete cosine transform to embed a grayscale image with high capacity.The coefficient of vertex and the encrypted picture pixels are used in the watermarking procedure.Additionally,the extraction approach is fully blind and is dependent on the backward steps of the encoding procedure to get the hidden data.Correlation distance,Euclidean distance,Manhattan distance,and the Cosine distance are used to evaluate and test the performance of the proposed approach.The visibility and imperceptibility of the proposed method are assessed to show the efficiency of our work compared to previous corresponding methods.