期刊文献+
共找到652篇文章
< 1 2 33 >
每页显示 20 50 100
Study of 3-D Numerical Simulation for Gas Transfer in the Goaf of the Coal Mining 被引量:13
1
作者 WU Zheng-yan JIANG Shu-guang HE Xin-jian WANG Lan-yun LIN Bai-quan 《Journal of China University of Mining and Technology》 EI 2007年第2期152-157,共6页
In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through poro... In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible. 展开更多
关键词 3D numerical simulation of gas transfer in the goaf air pressure distribution in the goaf weighted upstream multi-element balance numerical simulation method
在线阅读 下载PDF
Visualization test and numerical simulations of 2D blasting crack propagation
2
作者 Shan Guo Manchao He Seokwon Jeon 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4871-4888,共18页
Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately c... Drilling and blasting,characterized by their efficiency,ubiquity,and cost-effectiveness,have emerged as predominant techniques in rock excavation;however,they are accompanied by enormous destructive power.Accurately controlling the blasting energy and achieving the directional fracture of a rock mass have become common problems in the field.A two-dimensional blasting(2D blasting)technique was proposed that utilizes the characteristic that the tensile strength of a rock mass is significantly lower than its compressive strength.After blasting,only a 2D crack surface is generated along the predetermined direction,eliminating the damage to the reserved rock mass caused by conventional blasting.However,the interior of a natural rock mass is a"black box",and the process of crack propagation is difficult to capture,resulting in an unclear 2D blasting mechanism.To this end,a single-hole polymethyl methacrylate(PMMA)test piece was used to conduct a 2D blasting experiment with the help of a high-speed camera to capture the dynamic crack propagation process and the digital image correlation(DIC)method to analyze the evolution law of surface strain on the test piece.On this basis,a three-dimensional(3D)finite element model was established based on the progressive failure theory to simulate the stress,strain,damage,and displacement evolution process of the model under 2D blasting.The simulation results were consistent with the experimental results.The research results reveal the 2D blasting mechanism and provide theoretical support for the application of 2D blasting technology in the field of rock excavation. 展开更多
关键词 2D blasting technology Non-explosive blasting Polymethyl methacrylate(PMMA) Visualization of crack propagation 3D numerical simulation
在线阅读 下载PDF
Numerical simulations of full-wave fi elds and analysis of channel wave characteristics in 3-D coal mine roadway models 被引量:12
3
作者 Yang Si-Tong Wei Jiu-Chuan +2 位作者 Cheng Jiu-Long Shi Long-Qing Wen Zhi-Jie 《Applied Geophysics》 SCIE CSCD 2016年第4期621-630,737,共11页
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ... Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways. 展开更多
关键词 Channel wave 3-d wave field numerical simulation Coal mine roadway Advance detection
在线阅读 下载PDF
3-D Finite-Element Numerical Simulation of Centrifugal Induction Electrosalg Casting Solidification Process
4
作者 Xichun Chen, Deguang Zhou, Jie Fu, Weiguo Xu Metallurgy School, University of Science and Technology Beijing Beijing 100083, China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第4期254-258,共5页
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul... A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact. 展开更多
关键词 3-d finite-element numerical simulation ANSYS software solidification process centrifugal induction electroslag casting (CIESC) shrinkage defect
在线阅读 下载PDF
NUMERICAL SIMULATION OF 3-D TURBULENT FLOWS OVER DREDGED TRENCHES
5
作者 Han Guoqi Wang Deguan Xu Xieqing Department of Environmental Engineering, Hohai University, Nanjing 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第4期313-322,共10页
A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free su... A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data. 展开更多
关键词 3- D surface water flow model dredged trenches k turbulence model numerical simulation.
在线阅读 下载PDF
Numerical Simulation of Microstructure Evolution for SA508-3 Steel during Inhomogeneous Hot Deformation Process 被引量:6
6
作者 Da-shan SUI Fei CHEN +1 位作者 Pei-pei ZHANG Zhen-shan CUI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第11期1022-1029,共8页
Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardeni... Based on hot compression tests by a Gleeble-1500D thermo-mechanical simulator, the flow stress model and microstructure evolution model for SA508-3 steel were established through the classical theories on work hardening and softening. The developed models were integrated into 3D thermal-mechanical coupled rigid plastic finite element software DEFORM3D. The inhomogeneous hot deformation (IHD) experiments of SA508 3 steel were designed and carried out. Meanwhile, numerical simulation was implemented to investigate the effect of temperature, strain and strain rate on microstructure during IHD process through measuring grain sizes at given positions. The simulated grain sizes were basically in agreement with the experimental ones. The results of experiment and simulation demonstrated that temperature is the main factor for the initiation of dynamic recrystallization (DRX), and higher temperature means lower critical strain so that DRX can be facilitated to obtain uniform fine microstructure. 展开更多
关键词 SA508-3 steel inhomogeneous hot deformation microstructure evolution grain size numerical simulation
原文传递
Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method 被引量:17
7
作者 Jin-long Wang Fu-ming Wang Yan-yu Zhao Jiong-ming Zhang Wei Ren 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期640-645,共6页
It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel ... It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel was simulated in solidification processes and the simulation results are consistent with the experimental ones. In addition, the effects of Gaussian distribution parameters were also studied. The simulation results show that the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the less the number of minimum grains is. However, the uniformity degree decreases first, and then increases gradually. 展开更多
关键词 finite element-cellular automaton model numerical simulation SOLIDIFICATION 3D-microstructure Gaussian distribution parameters
在线阅读 下载PDF
Numerical Simulation of Nonlinear Three-Dimensional Waves in Water of Arbitrary Varying Topography 被引量:10
8
作者 Hong, Guangwen Zhang, Hongsheng Feng, Weibing 《China Ocean Engineering》 SCIE EI 1998年第4期383-404,共22页
The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general condit... The numerical simulation is based on the authors' high-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth. Corresponding finite-difference equations and general conditions for open and fixed natural boundaries with an arbitrary reflection coefficient and phase shift are also given in this paper. The systematical tests of numerical simulation show that the theoretical models, the finite-difference algorithms and the boundary conditions can give good calculation results for the wave propagating in shallow and deep water with an arbitrary slope varying from gentle to steep. 展开更多
关键词 numerical simulation NONLINEAR 3D waves boundary conditions
在线阅读 下载PDF
The Effect of Three-Dimensional Variational Data Assimilation of QuikSCAT Data on the Numerical Simulation of Typhoon Track and Intensity 被引量:5
9
作者 曾智华 端义宏 +3 位作者 梁旭东 马雷鸣 Johnny Chung-leung CHAN 陈仲良 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第4期534-544,共11页
In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to stud... In this paper, the three-dimensional variational data assimilation scheme (3DVAR) in the mesoscale model version 5 (MM5) of the US Pennsylvania State University/National Center for Atmospheric Research is used to study the effect of assimilating the sea-wind data from QuikSCAT on the prediction of typhoon track and intensity. The case of Typhoon Dujuan (2003) is first tested and the results show appreciable improvements. Twelve other cases in 2003 are then evaluated. The assimilation of the QuikSCAT data produces significant impacts on the structure of Dujuan in terms of the horizontal and vertical winds, sea-level pressure and temperature at the initial time. With the assimilation, the 24-h (48-h) track prediction of 11 (10) out of the 12 typhoons is improved. The 24-h (48-h) prediction of typhoon intensity is also improved in 10 (9) of the 12 cases. These experiments therefore demonstrate that assimilation of the QuikSCAT sea-wind data can increase the accuracy of typhoon track and intensity predictions through modification of the initial fields associated with the typhoon. 展开更多
关键词 QUIKSCAT MM5 3DVAR numerical simulation Typhoon Dujuan
在线阅读 下载PDF
Numerical simulation of asphalt mixture based on three-dimensional heterogeneous specimen 被引量:5
10
作者 张肖宁 万成 +1 位作者 王栋 贺玲凤 《Journal of Central South University》 SCIE EI CAS 2011年第6期2201-2206,共6页
In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fi... In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure. 展开更多
关键词 asphalt mixture X-ray CT 3D heterogeneous specimen numerical simulation
在线阅读 下载PDF
Numerical Simulation of the Protective Effect of Complex Boundaries Toward Shock Waves in a 3D Explosive Field 被引量:3
11
作者 吴开腾 宁建国 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期50-54,共5页
A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves... A numerical method is presented that simulates 3D explosive field problems. A code MMIC3D using this method can be used to simulate the propagation and reflected effects of all kinds of rigid boundaries to shock waves produced by an explosive source. These numerical results indicate that the code MMIC3D has the ability in computing cases such as 3D shock waves produced by air explosion, vortex region of the shock wave, the Mach wave, and reflected waves behind rigid boundaries. 展开更多
关键词 explosive field shock wave MMIC3D numerical simulation complex boundaries
在线阅读 下载PDF
Numerical Simulation of 2D and 3D Sloshing Waves in a Regularly and Randomly Excited Container 被引量:2
12
作者 Eswaran M Akashdeep S. Virk Ujjwal K. Saha 《Journal of Marine Science and Application》 2013年第3期298-314,共17页
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numer... In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion. 展开更多
关键词 3D container free surface σ-transformation sloshing wave finite difference method numerical simulation
在线阅读 下载PDF
Quasi-3D Numerical Simulation of Tidal Hydrodynamic Field 被引量:1
13
作者 宋志尧 薛鸿超 +2 位作者 严以新 茅丽华 徐福敏 《China Ocean Engineering》 SCIE EI 1999年第3期265-276,共12页
Based on the 2D horizontal plane numerical model, a quasi-3D numerical model is established for coastal regions of shallow water. The characteristics of this model are that the velocity profiles;can be obtained at the... Based on the 2D horizontal plane numerical model, a quasi-3D numerical model is established for coastal regions of shallow water. The characteristics of this model are that the velocity profiles;can be obtained at the same time when the equations of the value of difference between the horizontal current velocity and its depth-averaged velocity in the vertical direction are solved and the results obtained are consistent with the results of the 2D, model. The circulating flow in the rectangular area induced by wind is simulated and applied to the tidal flow field of the radial sandbanks in the South Yellow Sea. The computational results from this quasi-3D model are in good agreement with analytical results and observed data. The solution of the finite difference equations has been found to be stable, and the model is simple, effective and practical. 展开更多
关键词 tidal hydrodynamic field quasi-3D numerical model 2D numerical model velocity profile numerical simulation
在线阅读 下载PDF
An explicit method for numerical simulation of wave equations: 3D wave motion 被引量:1
14
作者 Liu Heng Liao Zhenpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第1期13-20,共8页
In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform ... In this paper, an explicit method is generalized from 1D and 2D models to a 3D model for numerical simulation of wave motion, and the corresponding recursion formulas are developed for 3D irregular grids. For uniform cubic grids, the approach used to establish stable formulas with 2M-order accuracy is discussed in detail, with M being a positive integer, and is illustrated by establishing second order (M=1) recursion formulas. The theoretical results presented in this paper are demonstrated through numerical testing. 展开更多
关键词 3D wave equation numerical simulation explicit recursion formula finite element method
在线阅读 下载PDF
Dynamic Recrystallization of Hot Deformed 3Cr2NiMnMo Steel:Modeling and Numerical Simulation 被引量:1
15
作者 LI Xia WU Xiao-chun +1 位作者 ZHANG Xiao-xun LI Ming-yao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第11期98-104,共7页
Hot compression tests of 3Cr2NiMnMo steel were performed at temperatures in the range of 850 to 1 100 ℃ and with strain rates of 10 ^-2 s^- 1 to 1 s ^-1. Both the constitutive equations and the hot deformation activa... Hot compression tests of 3Cr2NiMnMo steel were performed at temperatures in the range of 850 to 1 100 ℃ and with strain rates of 10 ^-2 s^- 1 to 1 s ^-1. Both the constitutive equations and the hot deformation activation energy were derived from the correlativity of flow stress, strain rate and temperature. The mathematical models of the dynamic recrystaIiization of 3Cr2NiMnMo steel, which inelude the dynamic recrystallization kinetics model and the crystalliza- tion grain size model, are based on Avrami's law and the results of thermosimulation experiments. By integrating de- rived dynamic recrystallization models with the thermal mechanical coupled finite element method, the microstruc ture evolution in hot compressive deformation was simulated. The distribution of dynamic recrystallization grains and grain sizes were determined through a comparison of the simulation results with the experimental results. The distri- bution of strain and dynamic recrystallization grain is also discussed. The similarity between the experimental results and the simulated results indicates that the derived dynamic recrystallization models can be applied effectively to pre diet and analyze the microstructure evolution in hot deformed 3Cr2NiMnMo steel. 展开更多
关键词 dynamic recrysta[hzation 3Cr2NiMnMo steel hot forming microstructure evolution numerical simulation
原文传递
3D Numerical Simulation of Non-isothermal Resin Transfer Molding Filling Process Using Unstructured Tetrahedron Mesh 被引量:1
16
作者 施飞 董湘怀 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第6期684-689,共6页
We present a numerical formulation for resin flow based on the concept of quasi-steady state situation at the flow front. To be fit for complicated product shapes,we use the four-node unstructured tetrahedron mesh bas... We present a numerical formulation for resin flow based on the concept of quasi-steady state situation at the flow front. To be fit for complicated product shapes,we use the four-node unstructured tetrahedron mesh based on which the numerical formulation of temperature and degree of cure is developed. The validity of our method is established in the case where ffexible meshes are used. The results show that the numerical procedure,tested on known data,provides numerically valid and reasonably accurate predictions. 展开更多
关键词 3D non-isothermal resin transfer molding (RTM) numerical simulation unstructured tetrahedron mesh
原文传递
Numerical Simulation of Injection Molding Cooling Process Based on 3D Surface Model 被引量:8
17
作者 CUIShu-biao ZHOUHua-min LIDe-qun 《Computer Aided Drafting,Design and Manufacturing》 2004年第2期64-70,共7页
The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality ... The design of the cooling system of injection molds directly affects both productivity and the quality of the final part. Using the cooling process CAE system to instruct the mold design, the efficiency and quality of design can be improved greatly. At the same time, it is helpful to confirm the cooling system structure and optimize the process conditions. In this paper, the 3D surface model of mold cavity is used to replace the middle-plane model in the simulation by Boundary Element Method, which break the bottleneck of the application of the injection molding simulation softwares base on the middle-plane model. With the improvements of this paper, a practical and commercial simulation software of injection molding cooling process named as HsCAE3D6.0 is developed. 展开更多
关键词 injection molding cooling system numerical simulation 3D surface model Boundary Element Method
在线阅读 下载PDF
Three-dimensional numerical simulation of geothermal fi eld in space-wavenumber domain
18
作者 Dai Shi-Kun Jia Jin-Rong +3 位作者 Qiang Jian-Ke Chen Qing-Rui Ling Jia-Xuan Zhang Ying 《Applied Geophysics》 SCIE CSCD 2021年第4期435-450,592,共17页
Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for com... Large-scale,fine,and efficient numerical simulation of a geothermal field plays an important role in geothermal energy development.Confronted with the problem of large computation and high storage requirements for complex underground models in a three-dimensional(3-D)numerical simulation of a geothermal fi eld,a mixed space-wavenumber domain 3-D numerical simulation algorithm is proposed in this paper.According to the superposition principle of temperature field,the geothermal field is decomposed into background and abnormal temperature fi elds for calculation.The uniform layered model is used to solve the background field.When the abnormal field is solved,the horizontal two-dimensional(2-D)Fourier transform is used to transform the 3-D diff erential equation satisfi ed by an abnormal field into a series of one-dimensional ordinary differential equations with diff erent wavenumbers,which greatly reduces the calculation and storage.The unit division of an ordinary diff erential equation is fl exible,and the calculation amount is small.The algorithm fully takes advantage of the effi ciency of the Fourier transform and the quickness of the catch-up method to solve linear equations with a fixed bandwidth,which effectively improves the computational efficiency.Compared with the COMSOL Multiphysics professional simulation finite element software,the time consumption and memory requirements of the algorithm proposed in this paper are reduced by multiple orders of magnitude in terms of ensuring accuracy and the same mesh division.The more the number of calculated nodes is,the more obvious is the advantage.We design models to study the thermal conductivity,heat fl ux boundary,regional tectonic morphology,and topographic relief of the geothermal fi eld distribution.A 3-D geophysical model is developed based on topographic elevation data,geothermal geology,and geophysical exploration data in the Qiabuqia area of Gonghe Basin,Qinghai Province,China.Numerical simulation of the geothermal fi eld in this area is realized,which shows that the algorithm is suitable for precise and effi cient simulation of an arbitrary complex terrain and geological conditions. 展开更多
关键词 Geothermal field space–wavenumber domain numerical simulation 3-d
在线阅读 下载PDF
Numerical simulation of intermediate phase growth in Ti/Al alternate foils 被引量:5
19
作者 刘江平 骆良顺 +5 位作者 苏彦庆 徐严谨 李新中 陈瑞润 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期598-603,共6页
To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental... To investigate the diffusion reaction between Ti/Al solid diffusion couple, Ti/Al alternate foils formed by hot pressing were annealed at 525, 550, 575 and 600 °C for time ranging from 1 to 40 h. The experimental results show that TiAl3 was the only observed phase at Ti/Al interface. The interface thermodynamics favored the preferential formation of TiAl3 in Ti/Al couple. The growth of TiAl3 layer occurred mainly towards Al foil side and exhibited a parabolic law. Using the interdiffusion coefficients calculated based on the contribution of grain boundary diffusion, the growth of TiAl3 was simulated numerically with the finite difference method, and the simulated results were in good agreement with the experimental ones. 展开更多
关键词 hot pressing diffusion couple TIAL3 finite difference method numerical simulation
在线阅读 下载PDF
Mechanical Properties of Nano-CaCO_(3) and Basalt Fiber Reinforced Concrete:Experiments and Numerical Simulations
20
作者 DIAO Mushuang REN Qianhui +2 位作者 SUN Xinjian ZHAO Yawei WEI Chengpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第5期922-932,共11页
In this study,the compressive,split tensile,and flexural strengths of concrete with nano-CaCO_(3) only were compared with those of concrete with nano-CaCO_(3) and basalt fibers through field experiments,and the underl... In this study,the compressive,split tensile,and flexural strengths of concrete with nano-CaCO_(3) only were compared with those of concrete with nano-CaCO_(3) and basalt fibers through field experiments,and the underlying mechanisms were analyzed by the Scanning Electron Microscope (SEM) techniques.On the mesoscale,a damage model of concrete was established based on the continuum progressive damage theory,which was used to investigate the influence of different lengths and contents of fibers on the mechanical properties of concrete.Then,the experimental and numerical simulation results were compared and analyzed to verify the feasibility of model.The results show that nano-CaCO_(3) can enhance the compressive strength of the concrete,with an optimal content of 2.0%.Adding basalt fibers into the nano-CaCO_(3) reinforced concrete may further enhance the compressive,split tensile,and flexural strengths of the concrete;however,the higher content of basalt fiber can not lead to higher performance of concrete.The optimal length and content of fiber are 6 mm and 0.20%,respectively.The SEM result shows that the aggregation of basalt fibers is detrimental to the mechanical properties of concrete.The numerical simulation results are in good agreement with the experimental results. 展开更多
关键词 CONCRETE nano-CaCO_(3) basalt fiber mechanical property microscopic characterization numerical simulation
原文传递
上一页 1 2 33 下一页 到第
使用帮助 返回顶部