Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Zenith wet delay(ZWD)is a key parameter for the precise positioning of global navigation satellite systems(GNSS)and occupies a central role in meteorological research.Currently,most models only consider the periodic v...Zenith wet delay(ZWD)is a key parameter for the precise positioning of global navigation satellite systems(GNSS)and occupies a central role in meteorological research.Currently,most models only consider the periodic variability of the ZWD,neglecting the effect of nonlinear factors on the ZWD estimation.This oversight results in a limited capability to reflect the rapid fluctuations of the ZWD.To more accurately capture and predict complicated variations in ZWD,this paper developed the CRZWD model by a combination of the GPT3 model and random forests(RF)algorithm using 5-year atmospheric profiles from 70 radiosonde(RS)stations across China.Taking the external 25 test stations data as reference,the root mean square(RMS)of the CRZWD model is 29.95 mm.Compared with the GPT3 model and another model using backpropagation neural network(BPNN),the accuracy has improved by 24.7%and 15.9%,respectively.Notably,over 56%of the test stations exhibit an improvement of more than 20%in contrast to GPT3-ZWD.Further temporal and spatial characteristic analyses also demonstrate the significant accuracy and stability advantages of the CRZWD model,indicating the potential prospects for GNSS-based applications.展开更多
Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock propert...Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock properties.Given the multiscale characteristics of rock pore structures,direct three-dimensional imaging at sub-micrometer and nanometer scales is typically infeasible.This study introduces a method for reconstructing porous media using multidimensional data,which combines one-dimensional pore structure parameters with two-dimensional images to reconstruct three-dimensional models.The pore network model(PNM)is stochastically reconstructed using one-dimensional parameters,and a generative adversarial network(GAN)is utilized to equip the PNM with pore morphologies derived from two-dimensional images.The digital rocks generated by this method possess excellent controllability.Using Berea sandstone and Grosmont carbonate samples,we performed digital rock reconstructions based on PNM extracted by the maximum ball algorithm and compared them with stochastically reconstructed PNM.Pore structure parameters,permeability,and formation factors were calculated.The results show that the generated samples exhibit good consistency with real samples in terms of pore morphology,pore structure,and physical properties.Furthermore,our method effectively supplements the micropores not captured in CT images,demonstrating its potential in multiscale carbonate samples.Thus,the proposed reconstruction method is promising for advancing porous media property research.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are ob...This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.展开更多
A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the ca...A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the carbonyl group through a hydrogen bonding network generated by the catalyst.This activation method allows the reactions to be performed with very low catalyst loading,as low as 0.5 mol%.The scope of substrates is broad and a wide variety of functional groups are well tolerated.Diverse aliphatic aldehydes,aromatic aldehydes,unsaturated aldehydes and aromatic ketones coupled with silyl enol ethers/silyl ketone acetals to generate their correspondingβ-hydroxy carbonyl compounds in moderate to good yields.This discovery represents a significant advancement in the field of organic synthesis,as it provides a new,practical and sustainable solution for carbon-carbon bond formation in water.展开更多
Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first tw...Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.展开更多
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp...Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.展开更多
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach fo...Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D g...Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.展开更多
A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradie...A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important con...Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.展开更多
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog...In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.展开更多
Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 1...Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.展开更多
The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebo...The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebound in some areas. To investigate the spatiotemporal evolution characteristics of land subsidence in the eastern plain of Beijing following the SNWDP, this study employs Ascending (ASC) and Descending (DES) InSAR data combined with a Strain Model (SM) to obtain a Three-Dimensional (3-D) deformation field from 2016 to 2018. Through analysis of the 3-D deformation characteristics and spatiotemporal evolution of land subsidence in this region from 2016 to 2018, the results reveal a shift in the distribution of subsiding areas after the South-to-North Water Diversion, with a marked decrease in subsidence rates in certain areas. The maximum subsidence rate in the Beijing area has decreased to 110 mm/yr, accompanied by horizontal deformation at a rate of 12 mm/yr. Additionally, by examining the spatial relationship between major active faults and subsidence deformation in this region, the study further elucidates the influence of fault activity on the spatial distribution of subsidence deformation.展开更多
In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since...In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported by the National Natural Science Foundation of China[42030109,42074012]the Scientific Study Project for institutes of Higher Learning,Ministry of Education,Liaoning Province[LJKMZ20220673]+2 种基金the Project supported by the State Key Laboratory of Geodesy and Earths'Dynamics,Innovation Academy for Precision Measurement Science and Technology[SKLGED2023-3-2]Liaoning Revitalization Talent Program[XLYC2203162]Natural Science Foundation of Hebei Province in China[D2023402024].
文摘Zenith wet delay(ZWD)is a key parameter for the precise positioning of global navigation satellite systems(GNSS)and occupies a central role in meteorological research.Currently,most models only consider the periodic variability of the ZWD,neglecting the effect of nonlinear factors on the ZWD estimation.This oversight results in a limited capability to reflect the rapid fluctuations of the ZWD.To more accurately capture and predict complicated variations in ZWD,this paper developed the CRZWD model by a combination of the GPT3 model and random forests(RF)algorithm using 5-year atmospheric profiles from 70 radiosonde(RS)stations across China.Taking the external 25 test stations data as reference,the root mean square(RMS)of the CRZWD model is 29.95 mm.Compared with the GPT3 model and another model using backpropagation neural network(BPNN),the accuracy has improved by 24.7%and 15.9%,respectively.Notably,over 56%of the test stations exhibit an improvement of more than 20%in contrast to GPT3-ZWD.Further temporal and spatial characteristic analyses also demonstrate the significant accuracy and stability advantages of the CRZWD model,indicating the potential prospects for GNSS-based applications.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2024MD116)National Natural Science Foundation of China(Grant Nos.42174143,42004098)Technology Innovation Leading Program of Shaanxi(No.2024 ZC-YYDP-27).
文摘Subsurface rocks,as complex porous media,exhibit multiscale pore structures and intricate physical properties.Digital rock physics technology has become increasingly influential in the study of subsurface rock properties.Given the multiscale characteristics of rock pore structures,direct three-dimensional imaging at sub-micrometer and nanometer scales is typically infeasible.This study introduces a method for reconstructing porous media using multidimensional data,which combines one-dimensional pore structure parameters with two-dimensional images to reconstruct three-dimensional models.The pore network model(PNM)is stochastically reconstructed using one-dimensional parameters,and a generative adversarial network(GAN)is utilized to equip the PNM with pore morphologies derived from two-dimensional images.The digital rocks generated by this method possess excellent controllability.Using Berea sandstone and Grosmont carbonate samples,we performed digital rock reconstructions based on PNM extracted by the maximum ball algorithm and compared them with stochastically reconstructed PNM.Pore structure parameters,permeability,and formation factors were calculated.The results show that the generated samples exhibit good consistency with real samples in terms of pore morphology,pore structure,and physical properties.Furthermore,our method effectively supplements the micropores not captured in CT images,demonstrating its potential in multiscale carbonate samples.Thus,the proposed reconstruction method is promising for advancing porous media property research.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the Key Research and DevelopmentPlan in Shanxi Province of China(No.201803D421045)the Natural Science Foundation of Shanxi Province(No.2021-0302-123104)。
文摘This study introduces a novel method for reconstructing the 3D model of aluminum foam using cross-sectional sequence images.Combining precision milling and image acquisition,high-qual-ity cross-sectional images are obtained.Pore structures are segmented by the U-shaped network(U-Net)neural network integrated with the Canny edge detection operator,ensuring accurate pore delineation and edge extraction.The trained U-Net achieves 98.55%accuracy.The 2D data are superimposed and processed into 3D point clouds,enabling reconstruction of the pore structure and aluminum skeleton.Analysis of pore 01 shows the cross-sectional area initially increases,and then decreases with milling depth,with a uniform point distribution of 40 per layer.The reconstructed model exhibits a porosity of 77.5%,with section overlap rates between the 2D pore segmentation and the reconstructed model exceeding 96%,confirming high fidelity.Equivalent sphere diameters decrease with size,averaging 1.95 mm.Compression simulations reveal that the stress-strain curve of the 3D reconstruction model of aluminum foam exhibits fluctuations,and the stresses in the reconstruction model concentrate on thin cell walls,leading to localized deformations.This method accurately restores the aluminum foam’s complex internal structure,improving reconstruction preci-sion and simulation reliability.The approach offers a cost-efficient,high-precision technique for optimizing material performance in engineering applications.
基金financial support from the Start-up Grant of Nanjing Tech University(Nos.38274017103,38037037)financial support from Distinguished University Professor grant(Nanyang Technological University)+1 种基金the Agency for Science,Technology and Research(A∗STAR)under its MTC Individual Research Grants(No.M21K2c0114)RIE2025 MTC Programmatic Fund(No.M22K9b0049).
文摘A“water”accelerated metal-free catalytic system has been discovered for the Mukaiyama-aldol reaction.The system involves the use of B(C_(6)F_(5))_(3) as a catalyst,which is water-tolerant and able to activate the carbonyl group through a hydrogen bonding network generated by the catalyst.This activation method allows the reactions to be performed with very low catalyst loading,as low as 0.5 mol%.The scope of substrates is broad and a wide variety of functional groups are well tolerated.Diverse aliphatic aldehydes,aromatic aldehydes,unsaturated aldehydes and aromatic ketones coupled with silyl enol ethers/silyl ketone acetals to generate their correspondingβ-hydroxy carbonyl compounds in moderate to good yields.This discovery represents a significant advancement in the field of organic synthesis,as it provides a new,practical and sustainable solution for carbon-carbon bond formation in water.
基金sponsored by the National Key R&D Program of China(No.2021YFA0715100)the Shenzhen Fundamental Research Program,China(No.JCYJ20220818102601004)+1 种基金the National Natural Science Foundation of China(No.41774145)the Pre-research Project on Civil Aerospace Technologies(No.D020101)of CNSA。
文摘Various models exist to explain the formation of the Tibetan Plateau,including“tectonic escape”,“pure shear thickening”,“convective removal of the lithospheric mantle”,and“lower crustal flow”model.The first two models are primarily constructed on pure mechanical models but are unable to reasonably explain the tension and shear phenomena inside the plateau.The latter two are rheological dynamic models based on deep geophysical observations.However,the spatial range of the lower crustal flow and its role in the plateau formation/uplift remain controversial.Five multi-terrane viscoplastic thermomechanical models were constructed to simulate the uplift and lithospheric structure change of the Tibetan Plateau during the post-collision stage(since 35 Ma)under the convergence of the Indian Plate.Results show that the plateau's formation begins with crustal thickening,blocked by strong terranes at the northern plateau,and expanded laterally to the east.The lithosphere thickens gradually and experiences delamination at its base,elevating temperature within the crust and forming partial melting layers in the central plateau.As convergence persists on the southern side,the northern plateau's lithosphere bends downward and undergoes delamination,further heating the crust and promoting the northward and eastward flow of partial melting layers,leading to secondary uplift around the plateau.
基金the National Natural Science Foundation of China(Nos.62272063,62072056 and 61902041)the Natural Science Foundation of Hunan Province(Nos.2022JJ30617 and 2020JJ2029)+4 种基金Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications(No.JZNY202102)the Traffic Science and Technology Project of Hunan Province,China(No.202042)Hunan Provincial Key Research and Development Program(No.2022GK2019)this work was funded by the Researchers Supporting Project Number(RSPD2023R681)King Saud University,Riyadh,Saudi Arabia.
文摘Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety.
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金Supported by the Ministerial Level Advanced Research Foundation(9140A01010411BQ01)the National Twelfth Five-Year Project(40405050303)
文摘Automatic target recognition (ATR) is an important issue for military applications, the topic of the ATR system belongs to the field of pattern recognition and classification. In the paper, we present an approach for building an ATR system with improved artificial neural network to recog- nize and classify the typical targets in the battle field. The invariant features of Hu invariant moments and roundness were selected to be the inputs of the neural network because they have the invari- ances of rotation, translation and scaling. The pictures of the targets are generated by the 3-D mod- els to improve the recognition rate because it is necessary to provide enough pictures for training the artificial neural network. The simulations prove that the approach can be implement ed in the ATR system and it has a high recognition rate and can be applied in real time.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
文摘Applying new approaches, methods, and technologies for the estimation of reserves can effectively improve the efficiency and accuracy of assessments of solid mineral resources. After analyzing the development of 3-D geoscience modeling technology (3-D GMT), this paper discusses the application of 3-D GMT for the estimation of solid mineral reserves, emphatically introducing its workflow and two key technologies, 3-D orebody surface modeling, and property modeling. Moreover, the paper analyzes the limitations of traditional methods, such as the section method and geological block method, and points out the advantages of 3-D GMT: building more accurate 3-D orebody models, expressing the internal inhomogeneous attributes of an orebody, reducing the potential for errors in the estimation of reserves, and implementing dynamic estimations of reserves.
文摘A 3-D numerical model is set up in a large domain covering the Hangzhou Bay and the Changjiang Estuary based on the ECOM model in orthogonal curvilinear coordinates.The numerical schemes for baroclinic pressure gradient (BPG)terms and convective terms are improved in the paper according to the characteristics of velocity field and mass transport in the area.The model is validated by the simulations of residual current and salinity transport in the Hangzhou Bay and the Changjiang Estuary.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFC2900500)the National Natural Science Foundation of China(Nos.52074020 and 42202306)+2 种基金the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.WPUKFJJ2019-06)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21001)the Natural Science Foundation of Jiangsu Province,China(No.BK20200993).
文摘Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.
文摘In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value.
文摘Fetr6 is an underground mine in which chromite is extracted using stope and pillar mining method. Despite of all improving works such as roof supporting and replacing of ore pillars with concrete pillars, pillar No. 19 failed and other pillars failed progressively as a domino effect and 4000 m2 of mine collapsed within a few minutes, consequently. For detail investigation, two 3-D numerical models were developed by 3Dec. The first, a base model, was used for estimation of stress on pillars just before failure and the other for investigation of rock burst in pillar No. 19. The results show that discontinuity parameters such as friction angle and shear stiffness is critical parameters in this pillar failure. In addition, it indicates that W/H ratio equal 0.3, the lack of ore extraction strategy and inadequate roof support are the major reasons for this failure. In this paper, the procedure of study was described.
文摘The implementation of the South-to-North Water Diversion Project (SNWDP) has alleviated groundwater resource pressure in North China to some extent, resulting in a gradual deceleration of land subsidence and even rebound in some areas. To investigate the spatiotemporal evolution characteristics of land subsidence in the eastern plain of Beijing following the SNWDP, this study employs Ascending (ASC) and Descending (DES) InSAR data combined with a Strain Model (SM) to obtain a Three-Dimensional (3-D) deformation field from 2016 to 2018. Through analysis of the 3-D deformation characteristics and spatiotemporal evolution of land subsidence in this region from 2016 to 2018, the results reveal a shift in the distribution of subsiding areas after the South-to-North Water Diversion, with a marked decrease in subsidence rates in certain areas. The maximum subsidence rate in the Beijing area has decreased to 110 mm/yr, accompanied by horizontal deformation at a rate of 12 mm/yr. Additionally, by examining the spatial relationship between major active faults and subsidence deformation in this region, the study further elucidates the influence of fault activity on the spatial distribution of subsidence deformation.
文摘In meandering rivers, the flow pattern is highly complex, with specific characteristics at bends that are not observed along straight paths. A numerical model can be effectively used to predict such flow fields. Since river bends are not uniform-some are divergent and others convergent-in this study, after the SSIIM 3-D model was calibrated using the result of measurements along a uniform 180° bend with a width of 0.6 m, a similar but convergent 180v bend, 0.6 m to 0.45 m wide, was simulated using the SSI1M 3-D numerical model. Flow characteristics of the convergent 180° bend, including lengthwise and vertical velocity profiles, primary and secondary flows, lengthwise and widtbwise slopes of the water surface, and the helical flow strength, were compared with those of the uniform 180° bend. The verification results of the model show that the numerical model can effectively simulate the flow field in the uniform bend. In addition, this research indicates that, in a convergent channel, the maximum velocity path at a plane near the water surface crosses the channel's centerline at about a 30° to 40° cross-section, while in the uniform bend, this occurs at about the 50° cross-section. The varying range of the water surface elevation is wider in the convergent channel than in the uniform one, and the strength of the helical flow is generally greater in the uniform channel than in the convergent one. Also, unlike the uniform bend, the convergent bend exhibits no rotational cell against the main direction of secondary flow rotation at the 135° cross-section.