As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have ...Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.展开更多
Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficie...Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites.This effect is realized through critical structural modifications in device fabrication.Typically,perovskites have an octahedral structure,generally ABX3,where an organic ammonium cation(A’)participates in forming the perovskite structure,with A’_(n)(n=1 or 2)sandwiched between A_(n-1)B_(n)X_(3n+1)perovskite layers.Depending on whether A’is a monovalent or divalent cation,2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite,each generating different structures.Although each structure achieves similar effects,they incorporate distinct mechanisms in their formation.And according to these different structures,various properties appear,and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites.In this review,scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated,and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.展开更多
Additive manufacturing,commonly known as 3D printing,is transitioning from prototyping to a viable construction technology,enabling unprecedented geometric freedom and material efficiency.This paper focuses on the des...Additive manufacturing,commonly known as 3D printing,is transitioning from prototyping to a viable construction technology,enabling unprecedented geometric freedom and material efficiency.This paper focuses on the design,manufacturing,and structural performance of customized,non-standard building components fabricated through concrete 3D printing.It investigates the interplay between computational design tools(e.g.,topology optimization,generative design)and the constraints and opportunities of the extrusion-based 3D printing process.The mechanical properties of printed concrete,particularly the anisotropic behavior due to layer-by-layer deposition,are critically analyzed.A series of mechanical tests on printed specimens(compression,flexural,and inter-layer shear)is presented and compared with cast-in-place concrete.The research demonstrates that through intelligent design that aligns with the printing path and material properties,3D printed components can achieve superior strength-to-weight ratios and novel functional integration(e.g.,internal cooling channels).This work provides valuable insights for architects and engineers seeking to leverage 3D printing for creating high-performance,architecturally expressive building elements.展开更多
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ...Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.展开更多
开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿...开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿命,并在模拟自然光下测定了其对盐酸四环素(TC)的光催化降解性能和循环稳定性.结果表明:TiO_(2)前驱体溶胶起到了分散P25颗粒和稳定浆料的作用,而PVA的加入则进一步改善了浆料的流变性能.当使用9 g P25粉末与10 mL TiO_(2)前驱体溶胶和1 mL质量分数为7%的PVA溶液混合时,得到了具有最佳成型性能的打印浆料,制备的降解筛结构完整,无塌陷和开裂.热处理后TiO_(2)前驱体溶胶转化而来的小粒径TiO_(2)填充在P25颗粒之间,起到了增强机械强度的作用,而PVA作为造孔剂极大地丰富了降解筛的孔隙结构.TiO_(2)光催化降解筛对TC表现出优异的光催化性能和循环稳定性,140 min内的降解率为98.4%,并在5次循环之后保持96.0%的降解率.展开更多
目的:探究GLI锌指3(GLI3)基因5个位点(rs77640775、rs2051935、rs3823720、rs1125413、rs846266)单核苷酸多态性(SNP)与指长比的关联性。方法:选取宁夏807名汉族大学生(女性405人,男性402人)为研究对象,以数码相机及Image-Pro Plus 6.0...目的:探究GLI锌指3(GLI3)基因5个位点(rs77640775、rs2051935、rs3823720、rs1125413、rs846266)单核苷酸多态性(SNP)与指长比的关联性。方法:选取宁夏807名汉族大学生(女性405人,男性402人)为研究对象,以数码相机及Image-Pro Plus 6.0图像软件分别采集双手照片,并测量示指(2D)和环指(4D)指长,多重PCR法检测GLI3基因5个SNP位点的基因型,单因素方差分析评估示-环指长比(D_(2/4))与GLI3基因多态性的关系。结果:宁夏女大学生左手D_(2/4)(LD_(2/4))、右手D_(2/4)(RD_(2/4))均显著高于男性;男性和女性间GLI3基因5个位点基因型和等位基因频率分布差异均无统计学意义;不同性别GLI3基因5个位点SNPs与双手D_(2/4)间均无显著关联。结论:D_(2/4)在宁夏大学生的分布具有显著性别二态性,暂未发现GLI3基因位点多态性与其形成有关。展开更多
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
基金financially supported by the National Key R&D Program of China (2022YFE0197100, 2023YFB4603500)Shenzhen Science and Technology Innovation Commission (KQTD20190929172505711)+1 种基金supported by MOE SUTD Kickstarter initiative (SKI2021_02_16)Singapore Ministry of Education academic research grant Tier 2 (MOE-T2EP50121-0007).
文摘Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.
基金the Research Grant of Kwangwoon University in 2024 and the National Research Foundation of Korea(RS-2023-00236572 and RS-2023-00212110)funded by the Korea government(MSIT)the project for Collabo R&D between Industry,University,and Research Institute(RS-2024-00414524)funded by Korea Ministry of SMEs and Startups.
文摘Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites.This effect is realized through critical structural modifications in device fabrication.Typically,perovskites have an octahedral structure,generally ABX3,where an organic ammonium cation(A’)participates in forming the perovskite structure,with A’_(n)(n=1 or 2)sandwiched between A_(n-1)B_(n)X_(3n+1)perovskite layers.Depending on whether A’is a monovalent or divalent cation,2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite,each generating different structures.Although each structure achieves similar effects,they incorporate distinct mechanisms in their formation.And according to these different structures,various properties appear,and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites.In this review,scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated,and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
文摘Additive manufacturing,commonly known as 3D printing,is transitioning from prototyping to a viable construction technology,enabling unprecedented geometric freedom and material efficiency.This paper focuses on the design,manufacturing,and structural performance of customized,non-standard building components fabricated through concrete 3D printing.It investigates the interplay between computational design tools(e.g.,topology optimization,generative design)and the constraints and opportunities of the extrusion-based 3D printing process.The mechanical properties of printed concrete,particularly the anisotropic behavior due to layer-by-layer deposition,are critically analyzed.A series of mechanical tests on printed specimens(compression,flexural,and inter-layer shear)is presented and compared with cast-in-place concrete.The research demonstrates that through intelligent design that aligns with the printing path and material properties,3D printed components can achieve superior strength-to-weight ratios and novel functional integration(e.g.,internal cooling channels).This work provides valuable insights for architects and engineers seeking to leverage 3D printing for creating high-performance,architecturally expressive building elements.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFE0207300)National Natural Science Foundation of China(Grant Nos.22179142 and 22075314)+1 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2024ZB051 and 2023ZB836)the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability.
文摘开发了一种使用直写成型(DIW)3D打印方法制备多孔TiO_(2)光催化降解筛的成型技术,厘清了打印浆料中P25粉末、TiO_(2)前驱体溶胶和聚乙烯醇(PVA)含量对其成型性能的影响规律;进一步研究了降解筛的物相组成、微观形貌、能带结构和载流子寿命,并在模拟自然光下测定了其对盐酸四环素(TC)的光催化降解性能和循环稳定性.结果表明:TiO_(2)前驱体溶胶起到了分散P25颗粒和稳定浆料的作用,而PVA的加入则进一步改善了浆料的流变性能.当使用9 g P25粉末与10 mL TiO_(2)前驱体溶胶和1 mL质量分数为7%的PVA溶液混合时,得到了具有最佳成型性能的打印浆料,制备的降解筛结构完整,无塌陷和开裂.热处理后TiO_(2)前驱体溶胶转化而来的小粒径TiO_(2)填充在P25颗粒之间,起到了增强机械强度的作用,而PVA作为造孔剂极大地丰富了降解筛的孔隙结构.TiO_(2)光催化降解筛对TC表现出优异的光催化性能和循环稳定性,140 min内的降解率为98.4%,并在5次循环之后保持96.0%的降解率.
文摘目的:探究GLI锌指3(GLI3)基因5个位点(rs77640775、rs2051935、rs3823720、rs1125413、rs846266)单核苷酸多态性(SNP)与指长比的关联性。方法:选取宁夏807名汉族大学生(女性405人,男性402人)为研究对象,以数码相机及Image-Pro Plus 6.0图像软件分别采集双手照片,并测量示指(2D)和环指(4D)指长,多重PCR法检测GLI3基因5个SNP位点的基因型,单因素方差分析评估示-环指长比(D_(2/4))与GLI3基因多态性的关系。结果:宁夏女大学生左手D_(2/4)(LD_(2/4))、右手D_(2/4)(RD_(2/4))均显著高于男性;男性和女性间GLI3基因5个位点基因型和等位基因频率分布差异均无统计学意义;不同性别GLI3基因5个位点SNPs与双手D_(2/4)间均无显著关联。结论:D_(2/4)在宁夏大学生的分布具有显著性别二态性,暂未发现GLI3基因位点多态性与其形成有关。