Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing ...Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.展开更多
In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By usin...In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method...Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.展开更多
This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the...This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations.展开更多
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ...By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.展开更多
This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plas...This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.展开更多
In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, ...In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.展开更多
In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symme...In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symmetries in nonlocal structure using the Painlevétruncated expansion approach.We use a prolonged system to localize these symmetries and establish the associated one-parameter Lie transformation group.In this transformation group,we deliver new exact solution profiles via the combination of various simple(seed and tangent hyperbolic form)exact solution structures.In this manner,we acquire an infinite amount of exact solution forms methodically.Furthermore,we demonstrate that the model may be integrated in terms of consistent Riccati expansion.Using the Maple symbolic program,we derive the exact solution forms of solitary-wave and soliton-cnoidal interaction.Through 3D and 2D illustrations,we observe the dynamic analysis of the acquired solution forms.展开更多
By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation th...By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.展开更多
We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1,then under the framework of zero curvature equations we generate two(2+1)-dimensional integrable hierarchies, includi...We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1,then under the framework of zero curvature equations we generate two(2+1)-dimensional integrable hierarchies, including the(2+1)-dimensional shallow water wave(SWW) hierarchy and the(2+1)-dimensional Kaup–Newell(KN)hierarchy. Through reduction of the(2+1)-dimensional hierarchies, we get a(2+1)-dimensional SWW equation and a(2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the(2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the(2+1)-dimensional KN equation could be deduced. Finally,with the help of the spatial spectral matrix of SWW hierarchy, we generate a(2+1) heat equation and a(2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang–Mills equations.展开更多
负压波法适合碳捕获、利用与封存(carbon capture utilization and storage,CCUS)技术的CO_(2)管道泄漏定位检测,但超临界CO_(2)管输周边环境及管内高压产生的噪声,影响了定位的准确性。为此,选择小波变换对含噪声的压力信号进行分解降...负压波法适合碳捕获、利用与封存(carbon capture utilization and storage,CCUS)技术的CO_(2)管道泄漏定位检测,但超临界CO_(2)管输周边环境及管内高压产生的噪声,影响了定位的准确性。为此,选择小波变换对含噪声的压力信号进行分解降噪,采用TGNET模拟软件建立CO_(2)管道泄漏模型,通过对比Botros的激波管泄放试验验证了泄漏模型的可行性。使用该泄漏模型对含噪声的压力信号进行小波降噪,再对降噪后的数据进行压差转化和互相关分析,最终得到各组压力传感器接收到压力信号的具体时间差。该泄漏模型还应用到了延长油田360000 t/a超临界CO_(2)管输方案,对人为设定的泄漏口压力噪声进行小波降噪和互相关分析。研究表明,经小波降噪后的压力信号更为稳定、精确,能够得到准确的时间差,为后续负压波法精确定位泄漏点位置提供了依据。展开更多
Studied in this paper is a(2+1)-dimensional coupled nonlinear Schr?dinger system with variable coefficients,which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifie...Studied in this paper is a(2+1)-dimensional coupled nonlinear Schr?dinger system with variable coefficients,which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. According to the similarity transformation, we derive the type-Ⅰ and type-Ⅱ rogue-wave solutions. We graphically present two types of the rouge wave and discuss the influence of the diffraction parameter on the rogue waves.When the diffraction parameters are exponentially-growing-periodic, exponential, linear and quadratic parameters, we obtain the periodic rogue wave and composite rogue waves respectively.展开更多
We derive the Lax pair and Darboux transformation for the(2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlev′e analysis. N-soliton solution in a compact determinant repr...We derive the Lax pair and Darboux transformation for the(2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlev′e analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.展开更多
The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé...The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.展开更多
Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso...Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.展开更多
In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the...In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.展开更多
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
基金financially supported by the Scientific Research Foundation of North China University of Technology (Grant Nos.11005136024XN147-87 and 110051360024XN151-86)。
文摘Recently, during the investigations on planetary oceans, Hirota-Satsuma-Ito-type models have been developed. In this paper, for a(2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito system describing the fluid dynamics of shallow-water waves in an open ocean, non-characteristic movable singular manifold and symbolic computation enable an oceanic auto-B?cklund transformation with three sets of the oceanic solitonic solutions. The results rely on the oceanic variable coefficients in that system. Future oceanic observations might detect some nonlinear features predicted in this paper, and relevant oceanographic insights might be expected.
基金supported by the National Natural Science Foundation of China (Grant No. 12 361 052)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05)+2 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414)the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007)the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02)
文摘In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11075055,11275072Innovative Research Team Program of the National Science Foundation of China under Grant No.61021104+3 种基金National High Technology Research and Development Program under Grant No.2011AA010101Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213Talent FundK.C.Wong Magna Fund in Ningbo University
文摘Two Darboux transformations of the(2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawaka(CDGKS)equation and(2+1)-dimensional modified Korteweg-de Vries(mKdV) equation are constructed through the Darboux matrix method, respectively. N-soliton solutions of these two equations are presented by applying the Darboux transformations N times. The right-going bright single-soliton solution and interactions of two and three-soliton overtaking collisions of the(2+1)-dimensional CDGKS equation are studied. By choosing different seed solutions, the right-going bright and left-going dark single-soliton solutions, the interactions of two and three-soliton overtaking collisions, and kink soliton solutions of the(2+1)-dimensional mKdV equation are investigated. The results can be used to illustrate the interactions of water waves in shallow water.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11171041 and 10971018the Natural Science Foundation of Shandong Province under Grant No.ZR2010AM029+1 种基金the Promotive Research Fund for Young and Middle-Aged Scientists of Shandong Province under Grant No.BS2010SF001the Doctoral Foundation of Binzhou University under Grant No.2009Y01
文摘This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations.
文摘By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund under Grant No.SKLSDE-2011KF-03+2 种基金Supported project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National High Technology Research and Development Program of China(863 Program) under Grant No.2009AA043303the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘This paper is to investigate the extended(2+1)-dimensional Konopelchenko-Dubrovsky equations,which can be applied to describing certain phenomena in the stratified shear flow,the internal and shallow-water waves, plasmas and other fields.Painleve analysis is passed through via symbolic computation.Bilinear-form equations are constructed and soliton solutions are derived.Soliton solutions and interactions are illustrated.Bilinear-form Backlund transformation and a type of solutions are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.61072145the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.SQKM201211232016
文摘In this paper, the (2+l)-dimensional generalization of shallow water wave equation, which may be used to describe the propagation of ocean waves, is analytically investigated. With the aid of symbolic computation, we prove that the (2+ l)-dimensional generalization of shallow water wave equation possesses the Palnlev6 property under a certain condition, and its Lax pair is constructed by applying the singular manifold method. Based on the obtained Lax representation, the Darboux transformation (DT) is constructed. The first iterated solution, second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT. Relevant properties are graphically illustrated, which might be helpful to understanding the propagation processes for ocean waves in shallow water.
文摘In this paper,we consider the(2+1)-dimensional Chaffee-Infante equation,which occurs in the fields of fluid dynamics,high-energy physics,electronic science etc.We build Bäcklund transformations and residual symmetries in nonlocal structure using the Painlevétruncated expansion approach.We use a prolonged system to localize these symmetries and establish the associated one-parameter Lie transformation group.In this transformation group,we deliver new exact solution profiles via the combination of various simple(seed and tangent hyperbolic form)exact solution structures.In this manner,we acquire an infinite amount of exact solution forms methodically.Furthermore,we demonstrate that the model may be integrated in terms of consistent Riccati expansion.Using the Maple symbolic program,we derive the exact solution forms of solitary-wave and soliton-cnoidal interaction.Through 3D and 2D illustrations,we observe the dynamic analysis of the acquired solution forms.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030, 90718041, and 40975038Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University (IRT0734)
文摘By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.
基金Supported by the National Natural Science Foundation of China under Grant No.11371361the Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2012AQ011,ZR2013AL016,ZR2015EM042+2 种基金National Social Science Foundation of China under Grant No.13BJY026the Development of Science and Technology Project under Grant No.2015NS1048A Project of Shandong Province Higher Educational Science and Technology Program under Grant No.J14LI58
文摘We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1,then under the framework of zero curvature equations we generate two(2+1)-dimensional integrable hierarchies, including the(2+1)-dimensional shallow water wave(SWW) hierarchy and the(2+1)-dimensional Kaup–Newell(KN)hierarchy. Through reduction of the(2+1)-dimensional hierarchies, we get a(2+1)-dimensional SWW equation and a(2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the(2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the(2+1)-dimensional KN equation could be deduced. Finally,with the help of the spatial spectral matrix of SWW hierarchy, we generate a(2+1) heat equation and a(2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang–Mills equations.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11772017,11272023,and 11471050the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Studied in this paper is a(2+1)-dimensional coupled nonlinear Schr?dinger system with variable coefficients,which describes the propagation of an optical beam inside the two-dimensional graded-index waveguide amplifier with the polarization effects. According to the similarity transformation, we derive the type-Ⅰ and type-Ⅱ rogue-wave solutions. We graphically present two types of the rouge wave and discuss the influence of the diffraction parameter on the rogue waves.When the diffraction parameters are exponentially-growing-periodic, exponential, linear and quadratic parameters, we obtain the periodic rogue wave and composite rogue waves respectively.
基金Supported by National Natural Science Foundation of China under Grant No.11331008China Postdoctoral Science Foundation Funded Sixtieth Batches(2016M602252)
文摘We derive the Lax pair and Darboux transformation for the(2+1)-dimensional inhomogeneous Gardner equation via the two-singular manifold method from Painlev′e analysis. N-soliton solution in a compact determinant representation of Grammian type is presented. As an application, dynamic properties of the bright and dark soliton solutions under periodic and parabolic oscillations up to second order are shown. Resonant behaviors of two bright and two dark solitons are studied, and asymptotic analysis of the corresponding resonant bright and dark two-soliton solutions are performed, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005)the K C Wong Magna Fund in Ningbo University。
文摘The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
文摘Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.
基金supported by the National Natural Science Foundation of China(12371255,11975306)the Xuzhou Basic Research Program Project(KC23048)+1 种基金the Six Talent Peaks Project in Jiangsu Province(JY-059)the 333 Project in Jiangsu Province and the Fundamental Research Funds for the Central Universities of CUMT(2024ZDPYJQ1003).
文摘In this work,we study wave state transitions of the(2+1)-dimensional Kortewegde Vries-Sawada-Kotera-Ramani(2KdVSKR)equation by analyzing the characteristic line and phase shift.By converting the wave parameters of the N-soliton solution into complex numbers,the breath wave solution is constructed.The lump wave solution is derived through the long wave limit method.Then,by choosing appropriate parameter values,we acquire a number of transformed nonlinear waves whose gradient relation is discussed according to the ratio of the wave parameters.Furthermore,we reveal transition mechanisms of the waves by exploring the nonlinear superposition of the solitary and periodic wave components.Subsequently,locality,oscillation properties and evolutionary phenomenon of the transformed waves are presented.And we also prove the change in the geometrical properties of the characteristic lines leads to the phenomena of wave evolution.Finally,for higher-order waves,a range of interaction models are depicted along with their evolutionary phenomena.And we demonstrate that their diversity is due to the fact that the solitary and periodic wave components produce different phase shifts caused by time evolution and collisions.
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。