The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,t...The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices.展开更多
Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manu...Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manually designed neural network models, find it difficult to maintain sustained and excellent performance in such a complex and changing environment. To address the problem of the adaptability of neural network models in complex environments, we propose a lightweight Transformer model(TransATIR) with a strong adaptive adjustment capability, based on the characteristics of air target intent recognition and the neural network architecture search technique. After conducting extensive experiments, it has been proved that TransATIR can efficiently extract the deep feature information from battlefield situation data by utilizing the neural architecture search algorithm, in order to quickly and accurately identify the real intention of the target. The experimental results indicate that TransATIR significantly improves recognition accuracy compared to the existing state-of-the-art methods, and also effectively reduces the computational complexity of the model.展开更多
With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,...With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.展开更多
Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Inter...Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Internet platform,the digital planning and architecture of enterprises research.First,we analyze the current challenges of digital transformation and the development opportunities brought by the industrial Internet.Then,we propose a digital planning method based on the industrial Internet platform,which takes the full connectivity of people,machine and things and intelligent decision making as the core,takes data collection,processing,analysis and application as the main line,and finally forms the top-level design of the digital transformation of enterprises.At the same time,we also built an industrial Internet platform architecture model,including the previous end perception layer,network transmission layer,platform service layer,and application innovation layer for four levels,to support enterprises in innovative applications and decision support under the industrial Internet environment.Research shows that this kind of enterprise digital planning and architecture based on an industrial Internet platform can effectively promote enterprises to achieve business model innovation,system innovation,and strengthen the flexibility and agility of enterprises to respond to market changes.The results of this research not only have important theoretical and practical significance for guiding enterprises to carry out digital planning and build an industrial Internet platform,but also provide useful reference for relevant policy formulation.展开更多
End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have ...End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have become one of the hottest network architectures in recent years.There has been an abundance of work improving upon DETR.However,DETR and its variants require a substantial amount of memory resources and computational costs,and the vast number of parameters in these networks is unfavorable for model deployment.To address this issue,a greedy pruning(GP)algorithm is proposed,applied to a variant denoising-DETR(DN-DETR),which can eliminate redundant parameters in the Transformer architecture of DN-DETR.Considering the different roles of the multi-head attention(MHA)module and the feed-forward network(FFN)module in the Transformer architecture,a modular greedy pruning(MGP)algorithm is proposed.This algorithm separates the two modules and applies their respective optimal strategies and parameters.The effectiveness of the proposed algorithm is validated on the COCO 2017 dataset.The model obtained through the MGP algorithm reduces the parameters by 49%and the number of floating point operations(FLOPs)by 44%compared to the Transformer architecture of DN-DETR.At the same time,the mean average precision(mAP)of the model increases from 44.1%to 45.3%.展开更多
This study presents a groundbreaking method named Expo-GAN(Exposition-Generative Adversarial Network)for style transfer in exhibition hall design,using a refined version of the Cycle Generative Adversarial Network(Cyc...This study presents a groundbreaking method named Expo-GAN(Exposition-Generative Adversarial Network)for style transfer in exhibition hall design,using a refined version of the Cycle Generative Adversarial Network(CycleGAN).The primary goal is to enhance the transformation of image styles while maintaining visual consistency,an areawhere current CycleGAN models often fall short.These traditionalmodels typically face difficulties in accurately capturing expansive features as well as the intricate stylistic details necessary for high-quality image transformation.To address these limitations,the research introduces several key modifications to the CycleGAN architecture.Enhancements to the generator involve integrating U-net with SpecTransformer modules.This integration incorporates the use of Fourier transform techniques coupled with multi-head self-attention mechanisms,which collectively improve the generator’s ability to depict both large-scale structural patterns and minute elements meticulously in the generated images.This enhancement allows the generator to achieve a more detailed and coherent fusion of styles,essential for exhibition hall designs where both broad aesthetic strokes and detailed nuances matter significantly.The study also proposes innovative changes to the discriminator by employing dilated convolution and global attention mechanisms.These are derived using the Differentiable Architecture Search(DARTS)Neural Architecture Search framework to expand the receptive field,which is crucial for recognizing comprehensive artistically styled images.By broadening the ability to discern complex artistic features,the model avoids previous pitfalls associated with style inconsistency and missing detailed features.Moreover,the traditional cyde-consistency loss function is replaced with the Learned Perceptual Image Patch Similarity(LPIPS)metric.This shift aims to significantly enhance the perceptual quality of the resultant images by prioritizing human-perceived similarities,which aligns better with user expectations and professional standards in design aesthetics.The experimental phase of this research demonstrates that this novel approach consistently outperforms the conventional CycleGAN across a broad range of datasets.Complementary ablation studies and qualitative assessments underscore its superiority,particularly in maintaining detail fidelity and style continuity.This is critical for creating a visually harmonious exhibitionhall designwhere everydetail contributes to the overall aesthetic appeal.The results illustrate that this refined approach effectively bridges the gap between technical capability and artistic necessity,marking a significant advancement in computational design methodologies.展开更多
Exploiting high-performance absorption-dominant electromagnetic interference(EMI)shielding composites is urgently desired yet challenging for minimizing secondary electromagnetic radiation pollution.Herein,a nickel(Ni...Exploiting high-performance absorption-dominant electromagnetic interference(EMI)shielding composites is urgently desired yet challenging for minimizing secondary electromagnetic radiation pollution.Herein,a nickel(Ni)shell was in-situ grown on a copper nanowires(CuNWs)core to greatly improve the stability of CuNWs,while maintaining excellent electrical conductivity.Afterward,Ni nanowires/Ni@Cu nanowires/graphite paper/waterborne polyurethane(NiNWs/Ni@CuNWs/graphite paper/WPU,n Ni-m Ni@Cu-G)composite foams with the multilayered gradient architectures were fabricated by a facile multi-step freeze-casting method.In the resultant composite foams,the lowly conductive porous NiNWs/WPU layer plays a role as the impedance matching layer,the moderately conductive porous Ni@CuNWs/WPU layer acts as the transition layer,and the highly conductive graphite paper layer serves as the reflection layer.Arising from the rational layout of multilayered gradient magnetic-electrical networks,n Ni-m Ni@Cu-G foam holds the superior averaged total EMI shielding effectiveness(EMI SET)of 75.2 dB and optimal absorption coefficient(A)of 0.93 at the incident direction from NiNWs/WPU layer,suggesting the dominant absorption in EMI shielding mechanism and efficiently alleviating the secondary electromagnetic pollution.Furthermore,n Ni-m Ni@Cu-G foam also exhibits fascinating compressive properties with a compressive strength of 49.3 kPa,which is essential for its practical application.This multilayered gradient architecture design provides valuable insight into high-efficiently constructing absorption-dominant EMI shielding composites.展开更多
Reconfigurable linear optical networks based on Mach-Zehnder interferometer(MZI)offer significant potential in optical information processing,particularly in emerging photonic quantum computing systems.However,device ...Reconfigurable linear optical networks based on Mach-Zehnder interferometer(MZI)offer significant potential in optical information processing,particularly in emerging photonic quantum computing systems.However,device losses and calibration errors accumulate as network complexity grows,posing challenges in performing precise mapping of matrix operations.Existing architectures,such as Diamond and Bokun,introduce MZI redundancy into Reck and Clements architectures to improve reliability,which increases complexity and differential path losses that limit scalability.We propose a compact topology architecture that achieves 100%fidelity by employing a symmetrical MZI to decouple optical loss from power ratio and introducing extra MZIs to enforce uniform loss distributions.This multi-level optimization enables direct monitoring pathways while supporting precise calibration,and it approaches theoretical fidelity in practical deployments with direct implications for scalable and fault-tolerant photonic computing systems.展开更多
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to case...The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.展开更多
The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation met...The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.展开更多
Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultiva...Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultivars. We collected 121 cotton accessions including 100 brownfiber and 21 white-fiber accessions, genotyped them by whole-genome resequencing, and phenotyped them in multiple environments. This genome-wide association study(GWAS)identified 11 quantitative trait loci(QTL) for two plant architecture traits: plant height and fruit spur branch number. Negative-effect alleles were enriched in the elite cultivars. Based on these QTL, gene annotation information, and published QTL, candidate genes and natural genetic variations in four QTL were identified. Ghir_D02 G017510 and Ghir_D02 G017600 were identified as candidate genes for qD02-FSBN-1, and a premature start codon gain variation was found in Ghir_D02 G017510. Ghir_A12 G026570, the candidate gene of qA12-FSBN-2, belongs to the pectin lyase-like superfamily, and a significantly associated SNP, A12_105366045(T/C), in this gene represents an amino acid change. The QTL, candidate genes, and associated natural variations in this study are expected to lay a foundation for studying functional genes and developing breeding programs for desirable architecture in brown-fiber cotton.展开更多
The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, S...The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.展开更多
As the fifth-generation(5G)mobile communication network may not meet the requirements of emerging technologies and applications,including ubiquitous coverage,industrial internet of things(IIoT),ubiquitous artificial i...As the fifth-generation(5G)mobile communication network may not meet the requirements of emerging technologies and applications,including ubiquitous coverage,industrial internet of things(IIoT),ubiquitous artificial intelligence(AI),digital twins(DT),etc.,this paper aims to explore a novel space-air-ground integrated network(SAGIN)architecture to support these new requirements for the sixth-generation(6G)mobile communication network in a flexible,low-latency and efficient manner.Specifically,we first review the evolution of the mobile communication network,followed by the application and technology requirements of 6G.Then the current 5G non-terrestrial network(NTN)architecture in supporting the new requirements is deeply analyzed.After that,we proposes a new flexible,low-latency and flat SAGIN architecture,and presents corresponding use cases.Finally,the future research directions are discussed.展开更多
Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture ...Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.展开更多
In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork model...In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.展开更多
With the large-scale commercial launch of fifth generation(5G)mobile network,the development of new services and applications catering to the year 2030,along with the deep convergence of information,communication,and ...With the large-scale commercial launch of fifth generation(5G)mobile network,the development of new services and applications catering to the year 2030,along with the deep convergence of information,communication,and data technologies(ICDT),and the lessons and experiences from 5G practice will drive the evolution of the next generation of mobile networks.This article surveys the history and driving forces of the evolution of the mobile network architecture and proposes a logical function architecture for sixth generation(6G)mobile network.The proposed 6G network architecture is termed SOLIDS(related to the following basic features:soft,on-demand fulfillment,lite,native intelligence,digital twin,and native security),which can support self-generation,self-healing,self-evolution,and self-immunity without human involvement and address the primary issues in the legacy 5G network(e.g.,high cost,high power consumption,and highly complicated operation and maintenance),significantly well.展开更多
Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is ...Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a closed conserved population. Our study suggested that current managements of conserved populations should emphasize on initial genetic architecture in order to make an effective and feasible conservation scheme.展开更多
As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this pa...As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this paper proposes a cyber-physical-social based security architecture (IPM) to deal with Information, Physical, and Management security perspectives, and presents how the architectural abstractions support U2IoT model. In particular, 1) an information security model is established to describe the mapping relations among U2IoT, security layer, and security requirement, in which social layer and additional intelligence and compatibility properties are infused into IPM;2) physical security referring to the external context and inherent infrastructure are inspired by artificial immune algorithms;3) recommended security strategies are suggested for social management control. The proposed IPM combining the cyber world, physical world and human social provides constructive proposal towards the future IoT security and privacy protection.展开更多
Recently,due to the availability of big data and the rapid growth of computing power,artificial intelligence(AI)has regained tremendous attention and investment.Machine learning(ML)approaches have been successfully ap...Recently,due to the availability of big data and the rapid growth of computing power,artificial intelligence(AI)has regained tremendous attention and investment.Machine learning(ML)approaches have been successfully applied to solve many problems in academia and in industry.Although the explosion of big data applications is driving the development of ML,it also imposes severe challenges of data processing speed and scalability on conventional computer systems.Computing platforms that are dedicatedly designed for AI applications have been considered,ranging from a complement to von Neumann platforms to a“must-have”and stand-alone technical solution.These platforms,which belong to a larger category named“domain-specific computing,”focus on specific customization for AI.In this article,we focus on summarizing the recent advances in accelerator designs for deep neural networks(DNNs)-that is,DNN accelerators.We discuss various architectures that support DNN executions in terms of computing units,dataflow optimization,targeted network topologies,architectures on emerging technologies,and accelerators for emerging applications.We also provide our visions on the future trend of AI chip designs.展开更多
基金the National Natural Science Foundation of China(No.62304020)supported by the National Key R&D Program of China(No.2023YFB3811300)the National Natural Science Foundation of China(No.52202370).
文摘The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices.
基金co-supported by the National Natural Science Foundation of China(Nos.61806219,61876189 and 61703426)the Young Talent Fund of University Association for Science and Technology in Shaanxi,China(Nos.20190108 and 20220106)the Innovation Talent Supporting Project of Shaanxi,China(No.2020KJXX-065).
文摘Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manually designed neural network models, find it difficult to maintain sustained and excellent performance in such a complex and changing environment. To address the problem of the adaptability of neural network models in complex environments, we propose a lightweight Transformer model(TransATIR) with a strong adaptive adjustment capability, based on the characteristics of air target intent recognition and the neural network architecture search technique. After conducting extensive experiments, it has been proved that TransATIR can efficiently extract the deep feature information from battlefield situation data by utilizing the neural architecture search algorithm, in order to quickly and accurately identify the real intention of the target. The experimental results indicate that TransATIR significantly improves recognition accuracy compared to the existing state-of-the-art methods, and also effectively reduces the computational complexity of the model.
基金supported by the National Natural Science Foundation of China(Nos.22005277,52474256 and 52074247)the Natural Science Foundation of Hubei Province(No.2024AFB662)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,Opening Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.oic-202401012)the Fundamental Research Funds for National Universities,China University of Geosciences(No.2024XLA93).
文摘With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.
文摘Under the current background of an information society,the digital transformation of enterprises has become a necessary means to enhance the competitiveness of enterprises.This article is based on the industrial Internet platform,the digital planning and architecture of enterprises research.First,we analyze the current challenges of digital transformation and the development opportunities brought by the industrial Internet.Then,we propose a digital planning method based on the industrial Internet platform,which takes the full connectivity of people,machine and things and intelligent decision making as the core,takes data collection,processing,analysis and application as the main line,and finally forms the top-level design of the digital transformation of enterprises.At the same time,we also built an industrial Internet platform architecture model,including the previous end perception layer,network transmission layer,platform service layer,and application innovation layer for four levels,to support enterprises in innovative applications and decision support under the industrial Internet environment.Research shows that this kind of enterprise digital planning and architecture based on an industrial Internet platform can effectively promote enterprises to achieve business model innovation,system innovation,and strengthen the flexibility and agility of enterprises to respond to market changes.The results of this research not only have important theoretical and practical significance for guiding enterprises to carry out digital planning and build an industrial Internet platform,but also provide useful reference for relevant policy formulation.
基金Shanghai Municipal Commission of Economy and Information Technology,China(No.202301054)。
文摘End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have become one of the hottest network architectures in recent years.There has been an abundance of work improving upon DETR.However,DETR and its variants require a substantial amount of memory resources and computational costs,and the vast number of parameters in these networks is unfavorable for model deployment.To address this issue,a greedy pruning(GP)algorithm is proposed,applied to a variant denoising-DETR(DN-DETR),which can eliminate redundant parameters in the Transformer architecture of DN-DETR.Considering the different roles of the multi-head attention(MHA)module and the feed-forward network(FFN)module in the Transformer architecture,a modular greedy pruning(MGP)algorithm is proposed.This algorithm separates the two modules and applies their respective optimal strategies and parameters.The effectiveness of the proposed algorithm is validated on the COCO 2017 dataset.The model obtained through the MGP algorithm reduces the parameters by 49%and the number of floating point operations(FLOPs)by 44%compared to the Transformer architecture of DN-DETR.At the same time,the mean average precision(mAP)of the model increases from 44.1%to 45.3%.
文摘This study presents a groundbreaking method named Expo-GAN(Exposition-Generative Adversarial Network)for style transfer in exhibition hall design,using a refined version of the Cycle Generative Adversarial Network(CycleGAN).The primary goal is to enhance the transformation of image styles while maintaining visual consistency,an areawhere current CycleGAN models often fall short.These traditionalmodels typically face difficulties in accurately capturing expansive features as well as the intricate stylistic details necessary for high-quality image transformation.To address these limitations,the research introduces several key modifications to the CycleGAN architecture.Enhancements to the generator involve integrating U-net with SpecTransformer modules.This integration incorporates the use of Fourier transform techniques coupled with multi-head self-attention mechanisms,which collectively improve the generator’s ability to depict both large-scale structural patterns and minute elements meticulously in the generated images.This enhancement allows the generator to achieve a more detailed and coherent fusion of styles,essential for exhibition hall designs where both broad aesthetic strokes and detailed nuances matter significantly.The study also proposes innovative changes to the discriminator by employing dilated convolution and global attention mechanisms.These are derived using the Differentiable Architecture Search(DARTS)Neural Architecture Search framework to expand the receptive field,which is crucial for recognizing comprehensive artistically styled images.By broadening the ability to discern complex artistic features,the model avoids previous pitfalls associated with style inconsistency and missing detailed features.Moreover,the traditional cyde-consistency loss function is replaced with the Learned Perceptual Image Patch Similarity(LPIPS)metric.This shift aims to significantly enhance the perceptual quality of the resultant images by prioritizing human-perceived similarities,which aligns better with user expectations and professional standards in design aesthetics.The experimental phase of this research demonstrates that this novel approach consistently outperforms the conventional CycleGAN across a broad range of datasets.Complementary ablation studies and qualitative assessments underscore its superiority,particularly in maintaining detail fidelity and style continuity.This is critical for creating a visually harmonious exhibitionhall designwhere everydetail contributes to the overall aesthetic appeal.The results illustrate that this refined approach effectively bridges the gap between technical capability and artistic necessity,marking a significant advancement in computational design methodologies.
基金supported by the National Natural Science Foundation of China(Nos.52363004,51963003,and 52263003)Guizhou Provincial Science and Technology Projects(No.ZK[2022]Maj019).
文摘Exploiting high-performance absorption-dominant electromagnetic interference(EMI)shielding composites is urgently desired yet challenging for minimizing secondary electromagnetic radiation pollution.Herein,a nickel(Ni)shell was in-situ grown on a copper nanowires(CuNWs)core to greatly improve the stability of CuNWs,while maintaining excellent electrical conductivity.Afterward,Ni nanowires/Ni@Cu nanowires/graphite paper/waterborne polyurethane(NiNWs/Ni@CuNWs/graphite paper/WPU,n Ni-m Ni@Cu-G)composite foams with the multilayered gradient architectures were fabricated by a facile multi-step freeze-casting method.In the resultant composite foams,the lowly conductive porous NiNWs/WPU layer plays a role as the impedance matching layer,the moderately conductive porous Ni@CuNWs/WPU layer acts as the transition layer,and the highly conductive graphite paper layer serves as the reflection layer.Arising from the rational layout of multilayered gradient magnetic-electrical networks,n Ni-m Ni@Cu-G foam holds the superior averaged total EMI shielding effectiveness(EMI SET)of 75.2 dB and optimal absorption coefficient(A)of 0.93 at the incident direction from NiNWs/WPU layer,suggesting the dominant absorption in EMI shielding mechanism and efficiently alleviating the secondary electromagnetic pollution.Furthermore,n Ni-m Ni@Cu-G foam also exhibits fascinating compressive properties with a compressive strength of 49.3 kPa,which is essential for its practical application.This multilayered gradient architecture design provides valuable insight into high-efficiently constructing absorption-dominant EMI shielding composites.
基金supported by the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0301400 and 2023ZD0301500)the National Natural Science Foundation of China(Grant Nos.62335019 and 62475291).
文摘Reconfigurable linear optical networks based on Mach-Zehnder interferometer(MZI)offer significant potential in optical information processing,particularly in emerging photonic quantum computing systems.However,device losses and calibration errors accumulate as network complexity grows,posing challenges in performing precise mapping of matrix operations.Existing architectures,such as Diamond and Bokun,introduce MZI redundancy into Reck and Clements architectures to improve reliability,which increases complexity and differential path losses that limit scalability.We propose a compact topology architecture that achieves 100%fidelity by employing a symmetrical MZI to decouple optical loss from power ratio and introducing extra MZIs to enforce uniform loss distributions.This multi-level optimization enables direct monitoring pathways while supporting precise calibration,and it approaches theoretical fidelity in practical deployments with direct implications for scalable and fault-tolerant photonic computing systems.
基金supported by the National Natural Science Foundation of China(No.12305344)the 2023 Anhui university research project of China(No.2023AH052179).
文摘The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.
基金Supported by the Natural Science Foundation of China(61076019)the China Postdoctoral Science Foundation(20100481134)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2008387)the Graduate Student Innovation Foundation of Jiangsu Province(CX07B-105z)~~
文摘The network on chip(NoC)is used as a solution for the communication problems in a complex system on chip(SoC)design.To further enhance performances,the NoC architectures,a high level modeling and an evaluation method based on OPNET are proposed to analyze their performances on different injection rates and traffic patterns.Simulation results for general NoC in terms of the average latency and the throughput are analyzed and used as a guideline to make appropriate choices for a given application.Finally,a MPEG4 decoder is mapped on different NoC architectures.Results prove the effectiveness of the evaluation method.
基金supported by the Fundamental Research Funds for the Central Universities(2662015PY097)the Breeding of New Early Maturing and High-quality Coloured Cotton Varieties(2016HZ09)
文摘Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultivars. We collected 121 cotton accessions including 100 brownfiber and 21 white-fiber accessions, genotyped them by whole-genome resequencing, and phenotyped them in multiple environments. This genome-wide association study(GWAS)identified 11 quantitative trait loci(QTL) for two plant architecture traits: plant height and fruit spur branch number. Negative-effect alleles were enriched in the elite cultivars. Based on these QTL, gene annotation information, and published QTL, candidate genes and natural genetic variations in four QTL were identified. Ghir_D02 G017510 and Ghir_D02 G017600 were identified as candidate genes for qD02-FSBN-1, and a premature start codon gain variation was found in Ghir_D02 G017510. Ghir_A12 G026570, the candidate gene of qA12-FSBN-2, belongs to the pectin lyase-like superfamily, and a significantly associated SNP, A12_105366045(T/C), in this gene represents an amino acid change. The QTL, candidate genes, and associated natural variations in this study are expected to lay a foundation for studying functional genes and developing breeding programs for desirable architecture in brown-fiber cotton.
基金funded by Tsinghua University-China Mobile Communications Group Co., Ltd. Joint Institute。
文摘The Service-based Architecture(SBA) is one of the key innovations of 5G architecture that leverage modularized, self-contained and independent services to provide flexible and cloud-native 5G network. In this paper, SBA for Space-Air-Ground Integrated Network(SAGIN) is investigated to enable the 5G integration deployment. This paper proposes a novel Holistic Service-based Architecture(H-SBA)for SAGIN of 5G-Advanced and beyond, i.e., 6G. The H-SBA introduces the concept of end-to-end servicebased architecture design. The "Network Function Service", introduced in 5G SBA, is extended from Control Plane to User Plane, from core network to access network. Based on H-SBA, the new generation of protocol design is proposed, which proposes to use IETF QUIC and SRv6 to substitute 5G HTTP/2.0 and GTP-U. Testing results show that new protocols can achieve low latency and high throughput, making them promising candidate for H-SBA.
基金supported in part by the National Key Research and Development Program under grant number 2020YFB1806800the Beijing Natural Science Foundation under grant number L212003the National Natural Science Foundation of China(NSFC)under grant numbers 62171010 and 61827901.
文摘As the fifth-generation(5G)mobile communication network may not meet the requirements of emerging technologies and applications,including ubiquitous coverage,industrial internet of things(IIoT),ubiquitous artificial intelligence(AI),digital twins(DT),etc.,this paper aims to explore a novel space-air-ground integrated network(SAGIN)architecture to support these new requirements for the sixth-generation(6G)mobile communication network in a flexible,low-latency and efficient manner.Specifically,we first review the evolution of the mobile communication network,followed by the application and technology requirements of 6G.Then the current 5G non-terrestrial network(NTN)architecture in supporting the new requirements is deeply analyzed.After that,we proposes a new flexible,low-latency and flat SAGIN architecture,and presents corresponding use cases.Finally,the future research directions are discussed.
基金supported by the National Science and Technology Major Project No.2015ZX03002004
文摘Along with the completion of the development of 4G technologies, the global mobile community starts the study of the next generation technologies, i.e. 5G technologies. This paper proposes a new flexible architecture for 5G mobile networks based on Network Function Virtualization(NFV) and Software Defined Network(SDN) technologies, which is adaptable to use cases and scenarios. Then implementation reference architecture and some typical 5G network deployment cases are discussed. Besides, some key issues for further study are also indicated at the end.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.
基金the National Key Research and Development Program of China(2020YFB1806800).
文摘With the large-scale commercial launch of fifth generation(5G)mobile network,the development of new services and applications catering to the year 2030,along with the deep convergence of information,communication,and data technologies(ICDT),and the lessons and experiences from 5G practice will drive the evolution of the next generation of mobile networks.This article surveys the history and driving forces of the evolution of the mobile network architecture and proposes a logical function architecture for sixth generation(6G)mobile network.The proposed 6G network architecture is termed SOLIDS(related to the following basic features:soft,on-demand fulfillment,lite,native intelligence,digital twin,and native security),which can support self-generation,self-healing,self-evolution,and self-immunity without human involvement and address the primary issues in the legacy 5G network(e.g.,high cost,high power consumption,and highly complicated operation and maintenance),significantly well.
基金partly supported by the program for Changjiang Scholar and Innovation Research Team in University, China (IRT1191)the Beijing Science and Technology Project, China (Z080005022208015)the Chinese Universities Scientific Fund (2012YJ058)
文摘Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a closed conserved population. Our study suggested that current managements of conserved populations should emphasize on initial genetic architecture in order to make an effective and feasible conservation scheme.
文摘As the Internet of Things (IoT) is emerging as an attractive paradigm, a typical IoT architecture that U2IoT (Unit IoT and Ubiquitous IoT) model has been presented for the future IoT. Based on the U2IoT model, this paper proposes a cyber-physical-social based security architecture (IPM) to deal with Information, Physical, and Management security perspectives, and presents how the architectural abstractions support U2IoT model. In particular, 1) an information security model is established to describe the mapping relations among U2IoT, security layer, and security requirement, in which social layer and additional intelligence and compatibility properties are infused into IPM;2) physical security referring to the external context and inherent infrastructure are inspired by artificial immune algorithms;3) recommended security strategies are suggested for social management control. The proposed IPM combining the cyber world, physical world and human social provides constructive proposal towards the future IoT security and privacy protection.
基金the National Science Foundations(NSFs)(1822085,1725456,1816833,1500848,1719160,and 1725447)the NSF Computing and Communication Foundations(1740352)+1 种基金the Nanoelectronics COmputing REsearch Program in the Semiconductor Research Corporation(NC-2766-A)the Center for Research in Intelligent Storage and Processing-in-Memory,one of six centers in the Joint University Microelectronics Program,a SRC program sponsored by Defense Advanced Research Projects Agency.
文摘Recently,due to the availability of big data and the rapid growth of computing power,artificial intelligence(AI)has regained tremendous attention and investment.Machine learning(ML)approaches have been successfully applied to solve many problems in academia and in industry.Although the explosion of big data applications is driving the development of ML,it also imposes severe challenges of data processing speed and scalability on conventional computer systems.Computing platforms that are dedicatedly designed for AI applications have been considered,ranging from a complement to von Neumann platforms to a“must-have”and stand-alone technical solution.These platforms,which belong to a larger category named“domain-specific computing,”focus on specific customization for AI.In this article,we focus on summarizing the recent advances in accelerator designs for deep neural networks(DNNs)-that is,DNN accelerators.We discuss various architectures that support DNN executions in terms of computing units,dataflow optimization,targeted network topologies,architectures on emerging technologies,and accelerators for emerging applications.We also provide our visions on the future trend of AI chip designs.