期刊文献+
共找到280,929篇文章
< 1 2 250 >
每页显示 20 50 100
基于GGO-KD-KNN算法的下肢步态识别研究
1
作者 李传江 丁新豪 +2 位作者 涂嘉俊 李昂 尹仕熠 《上海师范大学学报(自然科学版中英文)》 2025年第2期141-145,共5页
为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶... 为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶段.然后,进行sEMG去噪,并提取时域和频域特征.接着,用GGO算法基于灰雁群体行为进行启发式优化,优化KNN算法的K值和距离度量,并通过适应度迭代寻找最优解.实验结果表明,通过GGO算法优化的步态识别精度达到了98.23%,标准差为0.264,相较于其他常用算法,基于GGO-KD-KNN算法的步态识别方法展现出更高的分类准确率和稳定性,为下肢智能辅助装置的研究和开发提供了有力的理论支持. 展开更多
关键词 下肢步态识别 表面肌电信号(sEMG) 灰雁优化-k维树-k最近邻(GGO-kD-kNN)算法 分类优化
在线阅读 下载PDF
lncRNA CASC2 吸附 miR-K11-3p 调控 SSI-1对JAK-STAT 信号通路的影响
2
作者 张静 彭靖淇 房新志 《广东医学》 2025年第10期1521-1526,共6页
目的 研究长链非编码RNA癌易感性候选基因2(long non-coding RNA cancer susceptibility candidate 2,lncRNA CASC2)吸附微小核糖核酸-K11-3p(miR-K11-3p)调控细胞因子信号传导抑制因子1(STAT-induced STAT inhibitor 1,SSI-1)对JAK-STA... 目的 研究长链非编码RNA癌易感性候选基因2(long non-coding RNA cancer susceptibility candidate 2,lncRNA CASC2)吸附微小核糖核酸-K11-3p(miR-K11-3p)调控细胞因子信号传导抑制因子1(STAT-induced STAT inhibitor 1,SSI-1)对JAK-STAT信号通路的影响。方法 采用生物信息学预测CASC2与miR-K11-3p及miR-K11-3p与SSI-1的靶向关系,并通过双荧光素酶实验验证;利用Western blot和双荧光素酶实验检测CASC2通过miR-K11-3p对SSI-1表达的影响;过表达CASC2后,采用Western blot及q-PCR方法检测Janus激酶(Janus kinase,JAK)、信号转导子与转录激活子(signal transducer and activator of transcription,STAT)和酪氨酸激酶2(tyrosine kinase 2,TYK2 )蛋白及mRNA表达情况。结果CASC2能够靶向吸附miR-K11-3p(P<0.01),且SSI-1被证实是miR-K11-3p的靶基因(P<0.01);CASC2通过miR-K11-3p调控SSI-1的表达(P<0.01);过表达CASC2后,JAK、STAT和TYK2蛋白水平及mRNA水平表达均下降(P<0.01)。结论 lncRNA CASC2通过吸附miR-K11-3p调控SSI-1表达影响JAK-STAT信号通路。提示CASC2可能作为临床治疗卡波西肉瘤的潜在生物靶点。 展开更多
关键词 癌易感性候选基因2 微小核糖核酸-k11-3p 细胞因子信号传导抑制因子1 JAK-STAT信号通路 卡波西肉瘤
暂未订购
基于并行架构网络与改进动态FD-KNN的风力发电机轴承故障预警
3
作者 许伯强 王彪 +1 位作者 孙丽玲 尹彦博 《太阳能学报》 北大核心 2025年第10期753-765,共13页
针对当前风力发电机轴承故障预警准确率和可靠性不足的问题,提出一种基于并行架构网络与改进动态k近邻故障检测(FD-KNN)的风力发电机轴承故障预警方法。首先,对风力发电机的数据采集与监控(SCADA)数据进行相关性分析,筛选出与风力发电... 针对当前风力发电机轴承故障预警准确率和可靠性不足的问题,提出一种基于并行架构网络与改进动态k近邻故障检测(FD-KNN)的风力发电机轴承故障预警方法。首先,对风力发电机的数据采集与监控(SCADA)数据进行相关性分析,筛选出与风力发电机轴承关键变量高度相关的变量,并采用集合模态经验分解(EEMD)分解关键变量,深入挖掘关键变量内不同时间尺度的特征以及关键变量与高相关协变量的潜在相互作用。然后,构建一个结合自注意力机制的长短期记忆网络(SelfAttention-LSTM)和改进Transformer模型的新型并行架构网络,用以精确可靠地预测关键变量的未来状态。基于预测结果,计算残差,并结合风力发电机轴承的实时状态对FD-KNN算法进行动态优化,包括调整近邻规模、设置动态告警阈值和预警条件,以实现更为精准可靠的故障预警。最后,通过实际SCADA数据验证,结果表明该方法可提前识别风力发电机轴承故障,且在准确性和可靠性方面均表现出色。 展开更多
关键词 风电机组 数据采集与监视控制 轴承 深度学习 故障预警 改进动态FD-kNN算法 可靠性
原文传递
Top-K最优划分的景点个性化推荐方法仿真研究
4
作者 张一恒 王芹 《计算机仿真》 2025年第3期511-515,共5页
开展景点个性化推荐时,若不能完整采集用户浏览的相关数据,会直接影响后续景点的推荐效果,为此提出基于频繁序列挖掘的景点个性化推荐算法优化方法。利用网络爬虫工具爬取用户近期浏览与评论信息,获取旅游景点相关数据。基于数据采集结... 开展景点个性化推荐时,若不能完整采集用户浏览的相关数据,会直接影响后续景点的推荐效果,为此提出基于频繁序列挖掘的景点个性化推荐算法优化方法。利用网络爬虫工具爬取用户近期浏览与评论信息,获取旅游景点相关数据。基于数据采集结果构建景点知识图谱,生成景点序列,根据景点序列生成频繁序列,并利用Top-K最优划分方法对序列实施划分处理,通过对划分后频繁数据挖掘,获取景点最佳推荐序列,实现景点的个性化推荐。实验结果表明,利用该方法开展景点个性化推荐时,推荐效果好、精度高。 展开更多
关键词 频繁序列挖掘 旅游景点 个性化推荐算法 爬虫工具
在线阅读 下载PDF
基于MWST-DFS-K2算法的洱海水环境风险溯源研究
5
作者 沈春颖 张蕊 +4 位作者 程乖梅 王铭明 左黔 张宗亮 刘春旸 《水文》 北大核心 2025年第1期90-96,共7页
针对湖泊流域水环境污染责任量化模糊,难以准确科学进行管理及监督的问题,采用贝叶斯网络结构和K2算法学习,通过最大支撑树(MWST)得到最大父节点数,再由深度优先搜索算法(DFS)得到节点序,提出一种可对流域不确定性污染源进行责任量化的... 针对湖泊流域水环境污染责任量化模糊,难以准确科学进行管理及监督的问题,采用贝叶斯网络结构和K2算法学习,通过最大支撑树(MWST)得到最大父节点数,再由深度优先搜索算法(DFS)得到节点序,提出一种可对流域不确定性污染源进行责任量化的改进MWST-DFS-K2算法。基于此算法以洱海为实例验证构建流域污染物贝叶斯网络模型图,对其进行污染物量化分析后得出结论为,江尾站对流域内其他站点的污染贡献达90%以上,四级坝站水质次于Ⅱ类的概率为82%,该站本身存在较大水质问题,后续管理过程中应重点关注洱海流域出湖处水文站点四级坝站与入湖处水文站点江尾站周围的污染源。与传统溯源方法相比,该方法不仅弥补了对污染源不确定性分析的不足,还对污染源进行了科学的污染责任量化,能够为高原湖泊流域的污染物溯源研究提供参考。 展开更多
关键词 贝叶斯网络 深度优先搜索 最大支撑树 K2算法 污染风险溯源 洱海流域
在线阅读 下载PDF
基于PSO-Kriging模型的尾矿库三维稳定性分析
6
作者 黄德镛 黄日胜 +2 位作者 史凯东 吕世玮 陈治宇 《有色金属(中英文)》 北大核心 2025年第3期474-483,共10页
尾矿库是矿业活动中不可或缺的组成部分,同时也带来了显著的环境和安全风险。在尾矿累积过程中,物理沉淀、水动力作用和化学反应等多重因素导致尾矿的物理特性呈现出明显的空间差异性和分布不均匀性。现有的研究方法大多忽略了尾矿材料... 尾矿库是矿业活动中不可或缺的组成部分,同时也带来了显著的环境和安全风险。在尾矿累积过程中,物理沉淀、水动力作用和化学反应等多重因素导致尾矿的物理特性呈现出明显的空间差异性和分布不均匀性。现有的研究方法大多忽略了尾矿材料的不均一性和复杂性。而研究这些特性需进行大量的物理试验,虽然这些试验可以重复,但存在着系统误差且成本高昂,因此可以构建一个近似模型进行机械学习预测。以Kriging理论为基础,通过对多种寻优算法进行适应度对比以选出最佳的寻优算法,构建出高效的改进Kriging模型,为了验证PSO-Kriging模型的性能,采用估值分析与误差分析的方式对本模型插值效果进行综合评价,结果显示新模型提高了预测精度和变化趋势。在此基础上得到一组符合尾矿库实际情况的插值点特征力学参数。从空间变异性出发对尾矿库稳定性进行分析。基于一般沉积性数值模型,将插值点坐标与数值模型中网格模型中坐标相对应,通过Fish函数,将插值点力学参数即天然重度、黏聚力与内摩擦角的数据导入网格模型中。替换原网格点的力学参数,构建出考虑空间变异性的尾矿库三维数值模型,并对该模型进行分析,结果表明由于空间差异信息增加,计算结果更能反映实际状况。 展开更多
关键词 尾矿库 稳定性分析 KRIGING插值 PSO优化算法 三维数值模拟
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
7
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
8
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
9
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于密度峰值的top-k空间文本查询
10
作者 李艳红 涂锐 《中南民族大学学报(自然科学版)》 2025年第2期260-268,共9页
由于普通的空间关键词查询通常导致查询结果过多,人们往往倾向于搜索结果集中且文本匹配度较高的地点.提出了一种基于密度峰值的空间文本查询问题,以获取空间对象密度集中且文本相似度较高的空间典型对象.利用TF-IDF结合Cosine相似度评... 由于普通的空间关键词查询通常导致查询结果过多,人们往往倾向于搜索结果集中且文本匹配度较高的地点.提出了一种基于密度峰值的空间文本查询问题,以获取空间对象密度集中且文本相似度较高的空间典型对象.利用TF-IDF结合Cosine相似度评估方法计算查询条件与其他空间关键词的相关度,再基于密度峰值聚类(DPC)算法,在满足空间文本条件的对象中,设计了TS-DPC算法将中间的结果集根据密度要求分为若干簇集,一方面可以获取给定范围内满足密度要求的空间对象簇;另一方面可以获取不同空间对象簇的中心,为研究所需.而后,对该算法进行了优化,提出了TS-DPC-IMP算法,在保持其他参数不变的情况下,通过网格算法,减少了该算法的运行时间. 展开更多
关键词 空间数据库 聚类算法 密度峰值 密度聚类 cosine相似度
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
11
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms
12
作者 Afnan M.Alhassan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2207-2223,共17页
Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)method... Breast Arterial Calcification(BAC)is a mammographic decision dissimilar to cancer and commonly observed in elderly women.Thus identifying BAC could provide an expense,and be inaccurate.Recently Deep Learning(DL)methods have been introduced for automatic BAC detection and quantification with increased accuracy.Previously,classification with deep learning had reached higher efficiency,but designing the structure of DL proved to be an extremely challenging task due to overfitting models.It also is not able to capture the patterns and irregularities presented in the images.To solve the overfitting problem,an optimal feature set has been formed by Enhanced Wolf Pack Algorithm(EWPA),and their irregularities are identified by Dense-kUNet segmentation.In this paper,Dense-kUNet for segmentation and optimal feature has been introduced for classification(severe,mild,light)that integrates DenseUNet and kU-Net.Longer bound links exist among adjacent modules,allowing relatively rough data to be sent to the following component and assisting the system in finding higher qualities.The major contribution of the work is to design the best features selected by Enhanced Wolf Pack Algorithm(EWPA),and Modified Support Vector Machine(MSVM)based learning for classification.k-Dense-UNet is introduced which combines the procedure of Dense-UNet and kU-Net for image segmentation.Longer bound associations occur among nearby sections,allowing relatively granular data to be sent to the next subsystem and benefiting the system in recognizing smaller characteristics.The proposed techniques and the performance are tested using several types of analysis techniques 826 filled digitized mammography.The proposed method achieved the highest precision,recall,F-measure,and accuracy of 84.4333%,84.5333%,84.4833%,and 86.8667%when compared to other methods on the Digital Database for Screening Mammography(DDSM). 展开更多
关键词 Breast arterial calcification cardiovascular disease semantic segmentation transfer learning enhanced wolf pack algorithm and modified support vector machine
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
17
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
18
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
19
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
A Class of Parallel Algorithm for Solving Low-rank Tensor Completion
20
作者 LIU Tingyan WEN Ruiping 《应用数学》 北大核心 2025年第4期1134-1144,共11页
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ... In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision. 展开更多
关键词 Tensor completion Low-rank CONVERGENCE Parallel algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部