期刊文献+
共找到283,402篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
基于PNCC声纹特征提取技术和POA-KNN算法的齿轮箱声纹识别故障诊断
2
作者 廖力达 赵阁阳 +1 位作者 魏诚 刘川江 《机电工程》 北大核心 2026年第1期24-33,共10页
风力机齿轮箱是风力发电系统的核心组件之一,承担着将风能转化为电能的重要任务。由于运行环境的恶劣以及长期使用造成的磨损,齿轮箱常常会发生各种故障,从而导致齿轮箱运行过程中产生不同的噪声,严重影响风力机的正常运行和发电效率,因... 风力机齿轮箱是风力发电系统的核心组件之一,承担着将风能转化为电能的重要任务。由于运行环境的恶劣以及长期使用造成的磨损,齿轮箱常常会发生各种故障,从而导致齿轮箱运行过程中产生不同的噪声,严重影响风力机的正常运行和发电效率,因此,提出了一种基于功率正则化倒谱系数(PNCC)声纹特征提取技术,以及行星优化算法与K近邻算法(POA-KNN)模型的风力机齿轮箱声纹识别故障诊断方法。首先,采用LMS噪声采集仪采集了6种不同状态下的风力机齿轮箱噪声数据;然后,使用了PNCC声纹特征提取的方法,提取了齿轮箱噪声信号的声纹图谱;在KNN的基础上加入行星优化算法(POA)优化了K值,提出了性能较高的POA-KNN分类模型;最后,根据6类不同状态下的齿轮数据集,采用对比试验和消融实验验证了模型性能。研究结果表明:POA-KNN模型对齿轮箱的PNCC声纹图分类准确率达到99.4%,比KNN基线模型提升了1.9%。POA-KNN分类模型能很好地对数据集中不同状态下的齿轮箱进行分类,更高效地针对风力机齿轮箱中存在的故障进行诊断。 展开更多
关键词 齿轮箱 功率正则化倒谱系数 声纹识别 声纹特征图谱 行星优化算法与K近邻算法 分类模型
在线阅读 下载PDF
A White-Knight Double-Edged Scalpel:Meticulously Suturing Financial Algorithms with Technological Genes
3
作者 Liu Xinwei 《China's Foreign Trade》 2025年第6期30-33,共4页
The headquarters of Plutus Financial Group Ltd,based in Hong Kong of China,stands as a silent yet razorsharp marker—rooted deeply in the heart of traditional finance,while piercing boundaries,exploring the vast nebul... The headquarters of Plutus Financial Group Ltd,based in Hong Kong of China,stands as a silent yet razorsharp marker—rooted deeply in the heart of traditional finance,while piercing boundaries,exploring the vast nebulae of blockchain and artificial intelligence.This integrated financial services group,newly listed on Nasdaq this February,is moving through the cut-and-thrust of the capital market with the postureof a"white knight." 展开更多
关键词 financial algorithms traditional finance white knight technological genes plutus financial group ltd artificial intelligencethis capital market double edged scalpel
在线阅读 下载PDF
不同危险度MDS患者PBMC中BCL-xL、HERV-K gag水平及对病情向急性白血病转换的预测价值
4
作者 孙璨 杜姗姗 +2 位作者 郭敏 周静秋 章莉 《检验医学与临床》 2026年第2期230-237,共8页
目的研究不同危险度骨髓增生异常综合征(MDS)患者外周血单个核细胞(PBMC)中B淋巴细胞瘤-X基因长片段(BCL-xL)、人内源性逆转录病毒-K gag(HERV-K gag)水平及对MDS患者病情向急性髓系细胞白血病(AML)转换的预测价值。方法选取2020年1月至... 目的研究不同危险度骨髓增生异常综合征(MDS)患者外周血单个核细胞(PBMC)中B淋巴细胞瘤-X基因长片段(BCL-xL)、人内源性逆转录病毒-K gag(HERV-K gag)水平及对MDS患者病情向急性髓系细胞白血病(AML)转换的预测价值。方法选取2020年1月至2024年1月成都市第七人民医院和四川大学华西医院收治的218例MDS患者作为研究对象,随访1年,根据病情向AML转换情况,将其分为转换组、未转换组。收集MDS患者基线资料。使用倾向性评分匹配(PSM)降低组间偏倚。比较不同危险度(较低危、较高危)MDS患者及转换组和未转换组PBMC中BCL-xL mRNA、HERV-K gag mRNA水平。采用多因素Logistic回归分析MDS患者病情向AML转换的影响因素,根据危险度(较低危、较高危)分层,对回归分析结果进行敏感性检验。绘制受试者工作特征(ROC)曲线分析PBMC中BCL-xL mRNA、HERV-K gag mRNA单独及联合预测MDS患者病情向AML转换的价值。结果218例MDS患者中有1例失访,其余217例患者均获得随访,其中61例转换为AML(转换组),AML转换率为28.11%,另156例纳入未转换组。按照1∶1 PSM后共筛选出61例患者纳入转换组和61例患者纳入未转换组,2组各项基线资料比较,差异均无统计学意义(P>0.05)。较高危MDS患者PBMC中BCL-xL mRNA水平明显低于较低危患者,HERV-K gag mRNA水平明显高于较低危患者,差异均有统计学意义(P<0.05)。转换组患者PBMC中BCL-xL mRNA水平明显低于未转换组,HERV-K gag mRNA水平明显高于未转换组,差异均有统计学意义(P<0.05)。多因素Logistic回归分析结果显示,PBMC中BCL-xL mRNA水平升高是MDS患者病情向AML转换的独立保护因素(P<0.05),HERV-K gag mRNA水平升高是MDS患者病情向AML转换的独立危险因素(P<0.05),且在较低危、较高危患者中,PBMC中BCL-xL mRNA水平升高仍是MDS患者病情向AML转换的独立保护因素(P<0.05),PBMC中HERV-K gag mRNA水平升高仍是MDS患者病情向AML转换的独立危险因素(P<0.05),提示研究结果较为稳定。ROC曲线分析结果显示,PBMC中BCL-xL mRNA、HERV-K gag mRNA单独及联合预测MDS患者病情向AML转换的曲线下面积(AUC)分别为0.754、0.762、0.874,二者联合预测的AUC明显大于PBMC中BCL-xL mRNA、HERV-K gag mRNA单独预测的AUC(Z=2.257,P=0.024;Z=2.246,P=0.025)。结论不同危险度MDS患者PBMC中BCL-xL mRNA、HERV-K gag mRNA水平存在明显差异,PBMC中BCL-xL mRNA、HERV-K gag mRNA水平与MDS患者病情向AML转换有关,且二者联合检测能提高对MDS患者病情向AML转换的预测能力,二者均可为临床随访管理和治疗决策提供重要的参考信息。 展开更多
关键词 危险度 骨髓增生异常综合征 外周血单个核细胞 B淋巴细胞瘤-X基因长片段 人内源性逆转录病毒-k gag基因 急性白血病 转换 预测价值
暂未订购
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
5
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
6
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
7
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
8
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型及应用
9
作者 管子懿 沈振中 《水电能源科学》 北大核心 2026年第1期138-142,197,共6页
尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点... 尾矿坝是由尾砂长期堆积而成的,分层复杂、渗透系数不均一,为获取能反映其整体渗透特性的代表性渗透系数,提出一种新的反演方法。采用最优拉丁超立方抽样(OLHS)获取均布的尾矿坝渗透系数组合样本,将其代入有限元模型进行正分析得到测点水头值样本,两者结合构成数据集,通过核极限学习机(KELM)建立从渗透系数到测点水头的非线性映射关系,利用融合拉丁超立方抽样初始化种群、重心反向学习和自适应趋优边界改进的不实野燕麦优化(IAOO)算法对KELM的超参数进行优化,建立了基于OLHS-IAOO-KELM的尾矿坝渗透系数反演模型,并将其应用于工程实例中。通过该模型反演得到的尾矿坝渗透系数值合理,7个测点经渗流正分析得到的计算水头和实测水头的相对误差不超过2.08%,满足工程精度要求,且尾矿坝典型断面的渗流场位势分布符合一般规律。与其他模型相比较,该模型的反演结果误差最小。该模型的准确性和鲁棒性高,在尾矿坝渗透系数反演中具有实用价值。 展开更多
关键词 尾矿坝 渗透系数 反演分析 改进不实野燕麦优化算法 核极限学习机
原文传递
基于IMPA-xLSTM-KAN的上甑酒醅温度预测模型研究
10
作者 张磊 王淑青 +1 位作者 何逸豪 陈开元 《中国酿造》 北大核心 2026年第1期269-275,共7页
为了准确预测酒醅温度,识别酒醅气体逸出区域,从而指导上甑机器人合理铺料,该研究以枫林酒厂上甑酒醅温度数据为研究对象,采用红外热成像技术结合多层扩展长短期记忆网络(xLSTM),使用科尔莫格罗夫-阿诺德网络(KAN)层代替传统的全连接层... 为了准确预测酒醅温度,识别酒醅气体逸出区域,从而指导上甑机器人合理铺料,该研究以枫林酒厂上甑酒醅温度数据为研究对象,采用红外热成像技术结合多层扩展长短期记忆网络(xLSTM),使用科尔莫格罗夫-阿诺德网络(KAN)层代替传统的全连接层,采用改进海洋捕食者算法(IMPA)对模型参数进行优化,构建一种酒醅温度的精准预测模型,并对其预测性能进行评价。结果表明,IMPA-xLSTM-KAN模型的温度预测性能优于传统的长短期记忆网络(LSTM)、海洋捕食者算法(MPA)-xLSTM-KAN和IMPAxLSTM,其平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)及决定系数(R2)分别为0.182、0.053、0.237和0.934。此外,该模型在瑞芯微RK3588嵌入式平台上的部署测试显示,单次推理耗时仅7.7 ms,满足实时控制需求。IMPA-xLSTM-KAN模型的有效性为上甑机器人精准探汽提供了理论依据,对提高白酒酿造技术水平具有重要意义。 展开更多
关键词 酒醅 温度预测 红外热成像技术 海洋捕食者算法 多层扩展长短期记忆网络-科尔莫格罗夫-阿诺德网络
在线阅读 下载PDF
Application of QPSO-KM Algorithm in Wine Quality Classification
11
作者 邱靖 彭莞云 +1 位作者 吴瑞武 张海涛 《Agricultural Science & Technology》 CAS 2015年第9期2045-2047,共3页
Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers.... Since there are many factors affecting the quality of wine, total 17 factors were screened out using principle component analysis. The difference test was conducted on the evaluation data of the two groups of testers. The results showed that the evaluation data of the second group were more reliable compared with those of the first group. At the same time, the KM algorithm was optimized using the QPSO algorithm. The wine classification model was established. Compared with the other two algorithms, the QPSO-KM algorithm was more capable of searching the globally optimum solution, and it could be used to classify the wine samples. In addition,the QPSO-KM algorithm could also be used to solve the issues about clustering. 展开更多
关键词 QPSO KM algorithm Wine sample Classification model
在线阅读 下载PDF
基于GGO-KD-KNN算法的下肢步态识别研究 被引量:1
12
作者 李传江 丁新豪 +2 位作者 涂嘉俊 李昂 尹仕熠 《上海师范大学学报(自然科学版中英文)》 2025年第2期141-145,共5页
为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶... 为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶段.然后,进行sEMG去噪,并提取时域和频域特征.接着,用GGO算法基于灰雁群体行为进行启发式优化,优化KNN算法的K值和距离度量,并通过适应度迭代寻找最优解.实验结果表明,通过GGO算法优化的步态识别精度达到了98.23%,标准差为0.264,相较于其他常用算法,基于GGO-KD-KNN算法的步态识别方法展现出更高的分类准确率和稳定性,为下肢智能辅助装置的研究和开发提供了有力的理论支持. 展开更多
关键词 下肢步态识别 表面肌电信号(sEMG) 灰雁优化-k维树-k最近邻(GGO-kD-kNN)算法 分类优化
在线阅读 下载PDF
检出中国人群罕见抗-K抗体1例及抗-K抗体鉴定策略探讨
13
作者 苏蔓 赵倩 +5 位作者 胡光磊 李茵 王远花 钱明明 王振雷 陈莉 《临床血液学杂志》 2025年第10期802-805,共4页
目的鉴定1例抗体筛查阳性患者标本的抗体特异性并探讨抗体鉴定策略。方法输血前采用盐水介质试管法和Liss-间接抗人球蛋白试验(试管法)进行抗体筛查试验,发现1例老年男性患者血浆抗体筛查阳性,采用抗人球蛋白检测卡进行抗体鉴定并采用Li... 目的鉴定1例抗体筛查阳性患者标本的抗体特异性并探讨抗体鉴定策略。方法输血前采用盐水介质试管法和Liss-间接抗人球蛋白试验(试管法)进行抗体筛查试验,发现1例老年男性患者血浆抗体筛查阳性,采用抗人球蛋白检测卡进行抗体鉴定并采用Liss-间接抗人球蛋白试验(试管法)测定抗体效价。结果患者血浆中存在中国人群中罕见抗-K抗体并合并有抗-c、E抗体,效价分别为4和512。结论检出中国人群中罕见的Kell血型系统抗-K抗体1例,鉴于中国人群中K抗原分布存在显著的地域不均衡性且K抗原免疫原性较强,建议各地区根据本地人群特点谨慎评估所选用的抗体筛查谱细胞和抗体鉴定谱细胞抗原谱是否需覆盖K抗原,同时合理选择日常检测方法以避免抗-K抗体的漏检导致的严重输血不良反应及新生儿溶血病的发生。 展开更多
关键词 Kell 血型系统 -k 抗体
原文传递
lncRNA CASC2 吸附 miR-K11-3p 调控 SSI-1对JAK-STAT 信号通路的影响
14
作者 张静 彭靖淇 房新志 《广东医学》 2025年第10期1521-1526,共6页
目的 研究长链非编码RNA癌易感性候选基因2(long non-coding RNA cancer susceptibility candidate 2,lncRNA CASC2)吸附微小核糖核酸-K11-3p(miR-K11-3p)调控细胞因子信号传导抑制因子1(STAT-induced STAT inhibitor 1,SSI-1)对JAK-STA... 目的 研究长链非编码RNA癌易感性候选基因2(long non-coding RNA cancer susceptibility candidate 2,lncRNA CASC2)吸附微小核糖核酸-K11-3p(miR-K11-3p)调控细胞因子信号传导抑制因子1(STAT-induced STAT inhibitor 1,SSI-1)对JAK-STAT信号通路的影响。方法 采用生物信息学预测CASC2与miR-K11-3p及miR-K11-3p与SSI-1的靶向关系,并通过双荧光素酶实验验证;利用Western blot和双荧光素酶实验检测CASC2通过miR-K11-3p对SSI-1表达的影响;过表达CASC2后,采用Western blot及q-PCR方法检测Janus激酶(Janus kinase,JAK)、信号转导子与转录激活子(signal transducer and activator of transcription,STAT)和酪氨酸激酶2(tyrosine kinase 2,TYK2 )蛋白及mRNA表达情况。结果CASC2能够靶向吸附miR-K11-3p(P<0.01),且SSI-1被证实是miR-K11-3p的靶基因(P<0.01);CASC2通过miR-K11-3p调控SSI-1的表达(P<0.01);过表达CASC2后,JAK、STAT和TYK2蛋白水平及mRNA水平表达均下降(P<0.01)。结论 lncRNA CASC2通过吸附miR-K11-3p调控SSI-1表达影响JAK-STAT信号通路。提示CASC2可能作为临床治疗卡波西肉瘤的潜在生物靶点。 展开更多
关键词 癌易感性候选基因2 微小核糖核酸-k11-3p 细胞因子信号传导抑制因子1 JAK-STAT信号通路 卡波西肉瘤
暂未订购
Circular SAR processing using an improved omega-k type algorithm 被引量:7
15
作者 Leilei KOU Xiaoqing Wang +2 位作者 Jinsong Chong Maosheng Xiang Minhui Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期572-579,共8页
An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage traje... An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm. 展开更多
关键词 circular synthetic aperture radar omega-k algorithm wavenumber domain three-dimensional spatial resolution.
在线阅读 下载PDF
A Mathematical Model of Real-Time Simulation and the Convergence Analysis on Real-Time Runge-Kutta Algorithms 被引量:1
16
作者 Song Xiaoqiu, Li Bohu, Liu Degui, Yuan ZhaodingBeijing Institute of Computer Application and Simulation Technology, P. O. Box 142-213, Beijing 100854, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1991年第1期129-139,共11页
In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation... In this paper, a mathematical model of real-time simulation is given, and the problem of convergence on real-time Runge-Kutta algorithms is analysed. At last a theorem on the relation between the order of compensation and the convergent order of real-time algorithm is proved. 展开更多
关键词 Real-time simulation Runge-kutta algorithm Convergence analysis.
在线阅读 下载PDF
Modified Omega-K algorithm for processing helicopter-borne frequency modulated continuous waveform rotating synthetic aperture radar data 被引量:2
17
作者 Dong Li Guisheng Liao +1 位作者 Yong Liao Lisheng Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期476-485,共10页
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ... With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results. 展开更多
关键词 helicopter-borne rotating synthetic aperture radar(ROSAR) frequency modulated continuous wave (FMCW) improved Omega-k algorithm two-dimensional spectrum.
在线阅读 下载PDF
Top-K最优划分的景点个性化推荐方法仿真研究 被引量:1
18
作者 张一恒 王芹 《计算机仿真》 2025年第3期511-515,共5页
开展景点个性化推荐时,若不能完整采集用户浏览的相关数据,会直接影响后续景点的推荐效果,为此提出基于频繁序列挖掘的景点个性化推荐算法优化方法。利用网络爬虫工具爬取用户近期浏览与评论信息,获取旅游景点相关数据。基于数据采集结... 开展景点个性化推荐时,若不能完整采集用户浏览的相关数据,会直接影响后续景点的推荐效果,为此提出基于频繁序列挖掘的景点个性化推荐算法优化方法。利用网络爬虫工具爬取用户近期浏览与评论信息,获取旅游景点相关数据。基于数据采集结果构建景点知识图谱,生成景点序列,根据景点序列生成频繁序列,并利用Top-K最优划分方法对序列实施划分处理,通过对划分后频繁数据挖掘,获取景点最佳推荐序列,实现景点的个性化推荐。实验结果表明,利用该方法开展景点个性化推荐时,推荐效果好、精度高。 展开更多
关键词 频繁序列挖掘 旅游景点 个性化推荐算法 爬虫工具
在线阅读 下载PDF
IRKO:An Improved Runge-Kutta Optimization Algorithm for Global Optimization Problems 被引量:1
19
作者 R.Manjula Devi M.Premkumar +3 位作者 Pradeep Jangir Mohamed Abdelghany Elkotb Rajvikram Madurai Elavarasan Kottakkaran Sooppy Nisar 《Computers, Materials & Continua》 SCIE EI 2022年第3期4803-4827,共25页
Optimization is a key technique for maximizing or minimizing functions and achieving optimal cost,gains,energy,mass,and so on.In order to solve optimization problems,metaheuristic algorithms are essential.Most of thes... Optimization is a key technique for maximizing or minimizing functions and achieving optimal cost,gains,energy,mass,and so on.In order to solve optimization problems,metaheuristic algorithms are essential.Most of these techniques are influenced by collective knowledge and natural foraging.There is no such thing as the best or worst algorithm;instead,there are more effective algorithms for certain problems.Therefore,in this paper,a new improved variant of a recently proposed metaphorless Runge-Kutta Optimization(RKO)algorithm,called Improved Runge-Kutta Optimization(IRKO)algorithm,is suggested for solving optimization problems.The IRKO is formulated using the basic RKO and local escaping operator to enhance the diversification and intensification capability of the basic RKO version.The performance of the proposed IRKO algorithm is validated on 23 standard benchmark functions and three engineering constrained optimization problems.The outcomes of IRKO are compared with seven state-of-the-art algorithms,including the basic RKO algorithm.Compared to other algorithms,the recommended IRKO algorithm is superior in discovering the optimal results for all selected optimization problems.The runtime of IRKO is less than 0.5 s for most of the 23 benchmark problems and stands first for most of the selected problems,including real-world optimization problems. 展开更多
关键词 Engineering design global optimization local escaping operator metaheuristics Runge-kutta optimization algorithm
在线阅读 下载PDF
THE GLOBALIZATION OF DURAND-KERNER ALGORITHM
20
作者 赵风光 王德人 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第11期0-0,0-0+0-0+0-0+0-0+0-0+0,共13页
Making use of the theory of continuous homotopy and the relation betweensymmetric polynomtal and polynomtal in one variable the arthors devoted ims article to constructing a regularly homotopic curve with probability ... Making use of the theory of continuous homotopy and the relation betweensymmetric polynomtal and polynomtal in one variable the arthors devoted ims article to constructing a regularly homotopic curve with probability one. Discrete tracingalong this honlotopic curve leads 10 a class of Durand-Kerner algorithm with stepparameters. The convergernce of this class of algorithms is given, which solves theconjecture about the global property of Durand-Kerner algorithm. The.problem forsteplength selection is thoroughly discussed Finally, sufficient numerical examples areused to verify our theory 展开更多
关键词 Durand-kerner algorithm continuous homotopy path tracing global convergence point estimation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部