Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique...Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed.展开更多
The hydrothermal synthesis of single-crystallineβ-MnO2 nanorods and their chemical conversion into single-crystalline LiMn2O4 nanorods by a simple solid-state reaction were reported.This method has the advantages of ...The hydrothermal synthesis of single-crystallineβ-MnO2 nanorods and their chemical conversion into single-crystalline LiMn2O4 nanorods by a simple solid-state reaction were reported.This method has the advantages of producing pure,single-phase and crystalline nanorods.The LiMn2O4 nanorods have an diameter of about 300 nm.The discharge capacity and cyclic performance of the batteries were investigated.The LiMn2O4 nanorods show better cyclic performance with a capacity retention ratio of 86.2% after 100 cycles.Battery cyclic studies reveal that the prepared LiMn2O4 nanorods have high capacity with a first discharge capacity of 128.7 mA·h/g.展开更多
以MnSO_4·H_2O与NaClO_3为原料,NH_4F为辅助剂,通过水热法合成了海胆状β-MnO_2前驱体,研究了NH_4F用量对前驱体形貌的影响。以形貌最优的β-MnO_2作为前驱体与LiOH·H_2O通过高温烧结合成棒状尖晶石型LiMn_2O_4,并将它与商业M...以MnSO_4·H_2O与NaClO_3为原料,NH_4F为辅助剂,通过水热法合成了海胆状β-MnO_2前驱体,研究了NH_4F用量对前驱体形貌的影响。以形貌最优的β-MnO_2作为前驱体与LiOH·H_2O通过高温烧结合成棒状尖晶石型LiMn_2O_4,并将它与商业MnO_2为前驱体合成的尖晶石型LiMn_2O_4进行了结构和性能比较。通过X射线衍射分析(XRD)、扫描电镜(SEM)以及电化学性能测试等手段对MnO_2前驱体以及尖晶石型LiMn_2O_4产物进行了表征。实验结果表明,棒状LiMn_2O_4具有更优越的电化学性能:0.2C下首次放电比容量为119.8 m Ah/g,最高达到123.2 m Ah/g,30圈循环后,容量保持率为94.07%。展开更多
基金Projects(51004056,51004057)supported by the National Natural Science Foundation of ChinaProject(KKZ6201152009)supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences+2 种基金Project(2010ZC052)supported by the Applied Basic Research Foundation of Yunnan Province,ChinaProject(20125314110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2010247)supported by Analysis&Testing Foundation of Kunming University of Science and Technology,China
文摘Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed.
基金Project(2008AA031205)supported by the National High-tech Research and Development Program of China
文摘The hydrothermal synthesis of single-crystallineβ-MnO2 nanorods and their chemical conversion into single-crystalline LiMn2O4 nanorods by a simple solid-state reaction were reported.This method has the advantages of producing pure,single-phase and crystalline nanorods.The LiMn2O4 nanorods have an diameter of about 300 nm.The discharge capacity and cyclic performance of the batteries were investigated.The LiMn2O4 nanorods show better cyclic performance with a capacity retention ratio of 86.2% after 100 cycles.Battery cyclic studies reveal that the prepared LiMn2O4 nanorods have high capacity with a first discharge capacity of 128.7 mA·h/g.
文摘以MnSO_4·H_2O与NaClO_3为原料,NH_4F为辅助剂,通过水热法合成了海胆状β-MnO_2前驱体,研究了NH_4F用量对前驱体形貌的影响。以形貌最优的β-MnO_2作为前驱体与LiOH·H_2O通过高温烧结合成棒状尖晶石型LiMn_2O_4,并将它与商业MnO_2为前驱体合成的尖晶石型LiMn_2O_4进行了结构和性能比较。通过X射线衍射分析(XRD)、扫描电镜(SEM)以及电化学性能测试等手段对MnO_2前驱体以及尖晶石型LiMn_2O_4产物进行了表征。实验结果表明,棒状LiMn_2O_4具有更优越的电化学性能:0.2C下首次放电比容量为119.8 m Ah/g,最高达到123.2 m Ah/g,30圈循环后,容量保持率为94.07%。