Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the ...Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.展开更多
Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of thes...Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.展开更多
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc...This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.展开更多
A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the re...A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the reference functions method to describe the solution to the depth-separated wave equation approximately using parabolic cylinder functions.The conditions for the validity of this approximation are also discussed.Furthermore,a formula that incorporates waveguide effects for the modal group velocity is derived,revealing that boundary effects at very low frequencies can have a significant impact on the propagation characteristics of even low-order normal modes.The present method not only offers improved accuracy compared to the classical WKB approximation and the uniform asymptotic approximation based on Airy functions,but also provides a wider range of depth applicability.Additionally,this method exhibits strong agreement with numerical methods and offers valuable physical insights.Finally,the method is applied to the study of very-low-frequency sound propagation in the South China Sea,leading to sound transmission loss predictions that closely align with experimental observations.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
Objective:To investigate the effect of 12-lead electrocardiogram and 24-hour dynamic electrocardiogram in detecting pacemaker dysfunction and changes in cardiac function indexes in patients with pacemaker implantation...Objective:To investigate the effect of 12-lead electrocardiogram and 24-hour dynamic electrocardiogram in detecting pacemaker dysfunction and changes in cardiac function indexes in patients with pacemaker implantation.Methods:A total of 136 patients with pacemaker implantation in the First Clinical Medical College of Three Gorges University,Institute of Cardiovascular Disease of Three Gorges University and Yicang Central People’s Hospital from January 2023 to December 2024 were selected as the research objects.All patients received 12-lead electrocardiogram and 24-hour holter 3–14 days after implantation.Results:The overall detection rate of various types of pacemaker dysfunction by Holter was significantly higher than that by conventional ECG(27.21%vs.5.15%,χ^(2)=24.402,P<0.001).The overall arrhythmia detection rate of Holter was significantly higher than that of conventional electrocardiogram(57.35%vs.10.29%,χ^(2)=67.277,P<0.001).The time domain indexes of heart rate variability obtained by 24-hour continuous monitoring of Holter were significantly improved compared with those of conventional electrocardiogram(P<0.05).Conclusions:Compared with 12-lead electrocardiogram,24-hour holter monitoring can more accurately detect pacemaker dysfunction and arrhythmia in patients with pacemaker implantation,and provide more comprehensive data of heart rate variability,which is helpful for clinicians to better evaluate the cardiac function of patients and adjust treatment plans.展开更多
Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is a...Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is an effective method to extract modal depth functions using vertical line arrays(VLA),particularly in scenarios when no prior environment information is available.However,the SVD method requires rigorous orthogonality conditions,and its performance severely degenerates in the presence of mode degeneracy.Consequently,the SVD approach is often not feasible in practical scenarios.This paper proposes a full rank decomposition(FRD)method to address these issues.Compared to the SVD method,the FRD method has three distinct advantages:1)the conditions that the FRD method requires are much easier to be fulfilled in practical scenarios;2)both modal depth functions and wavenumbers can be simultaneously extracted via the FRD method;3)the FRD method is not affected by the phenomenon of mode degeneracy.Numerical simulations are conducted in two types of waveguides to verify the FRD method.The impacts of environment configurations and noise levels on the precision of the extracted modal depth functions and wavenumbers are also investigated through simulation.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combinin...Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.展开更多
Objective:To investigate the effects of“Three Methods and Three Acupoints”(TMTP)Tuina therapy on spinal microcirculation in sciatic nerve injury(SNI).Methods:Thirty-six SpragueeDawley rats were randomly assigned to ...Objective:To investigate the effects of“Three Methods and Three Acupoints”(TMTP)Tuina therapy on spinal microcirculation in sciatic nerve injury(SNI).Methods:Thirty-six SpragueeDawley rats were randomly assigned to four groups:normal,sham operation,model,and TMTP Tuina.Successful model induction was confirmed by observable hind limb lameness.After 20 sessions,hind limb grip strength and motor nerve conduction velocity(MNCV)were measured at baseline and following the 10th and 20th intervention.CD31 and a-SMA in the ventral horn of SNI model rats were detected using immunofluorescence.Motor neurons in the ventral horn were detected by Nissl staining.PTEN levels in the ventral horn were measured by ELISA,and PI3K,Akt,BDNF,VEGF,and HIF-1a expression was determined by RT-PCR.Spinal cord microcirculation was evaluated by western blotting analysis of the levels of Akt,p-Akt,BDNF,and VEGF.Results:Hind limb grip strength and MNCV significantly improved in the TMTP Tuina group compared to the model group(both P<.001).Morphology of ventral horn motor neurons in the TMTP Tuina group improved compared to the model group,with increased expressions of a-SMA(P=.002)and CD31(P=.006).Western blot analysis indicated increased expression of VEGF(P=.005),p-Akt(P<.001),and BDNF(P=.008)in the ventral horn following Tuina treatment.RT-PCR analysis revealed increased expression of PI3K,Akt,BDNF,VEGF and HIF-1a(all P<.05).In contrast,expression of PTEN decreased compared to the model group(P<.001).Conclusion:TMTP Tuina therapy may restore motor function in rats,enhance ventral horn motor neuron morphology,and promote angiogenesis and vascular smooth muscle proliferation.The mechanism may involve the activation of the PI3K/Akt signaling pathway.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when t...Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.展开更多
We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration...Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Circular RNAs(circRNAs)are a class of endogenous,singlestranded,covalently closed,mostly non-coding RNAs that are produced by back-splicing that links a downstream splice-donor site with an upstream splice-acceptor si...Circular RNAs(circRNAs)are a class of endogenous,singlestranded,covalently closed,mostly non-coding RNAs that are produced by back-splicing that links a downstream splice-donor site with an upstream splice-acceptor site(Chen,2016;Kristensen et al.,2019).CircRNAs have been reported to have important regulatory functions,such as acting as miRNA(Hansen et al.,2013;Memczak et al.,2013)or protein(Ashwal-Fluss et al.,2014)sponge to regulate gene expression,acting as scaffolds to mediate the formation of complexes(Du et al.,2016),and being translated into small functional peptides(Pamudurti et al.,2017).Notwithstanding,of millions of known circRNAs,those with demonstrated functions are a tiny fraction.展开更多
基金National Natural Science Foundation of China under Grant No.52278534the Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.
基金supported by the Open Funds for Hubei Key Laboratory of Marine Geological Resources,China University of Geosciences(No.MGR202308)the Natural Science Foundation of Shandong Province(No.ZR2020MD085)+3 种基金the National Natural Science Foundation of China(No.41821004)the Taishan Scholar Program(No.tstp2022114)the Shandong Provincial Natural Science Foundation(No.DKXZZ202206)the National Key Research and Development Program of China(No.2016YFC1402404).
文摘Ocean remote sensing satellites provide observations with high spatiotemporal resolution.However,the influence of clouds,fog,and haze frequently leads to significant data gaps.Accurate and effective estimation of these missing data is highly valuable for engineering and scientific research.In this study,the radial basis function(RBF)method is used to estimate the spatial distribution of total suspended matter(TSM)concentration in Hangzhou Bay using remote sensing data with severe data gaps.The estimation precision is validated by comparing the results with those of other commonly used interpolation methods,such as the Kriging method and the basic spline(B-spline)method.In addition,the applicability of the RBF method is explored.Results show that the estimation of the RBF method is significantly close to the observation in Hangzhou Bay.The average of the mean absolute error,mean relative error,and root mean square error in all the experiments is evidently smaller than those of the Kriging and B-spline interpolations,indicating that the proposed method is more appropriate for estimating the spatial distribution of the TSM in Hangzhou Bay.Finally,the TSM distribution in the blank observational area is predicted.This study can provide some reference values for handling watercolor remote sensing data.
基金supported by the Advance Research Project of Civil Aerospace Technology(Grant No.D020304)National Nat-ural Science Foundation of China(Grant Nos.52205257 and U22B2083).
文摘This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174048 and 12204128)。
文摘A Wentzel-Kramers-Brillouin(WKB)method is introduced for obtaining a uniform asymptotic solution for underwater sound propagation at very low frequencies in deep ocean.The method utilizes a mode sum and employs the reference functions method to describe the solution to the depth-separated wave equation approximately using parabolic cylinder functions.The conditions for the validity of this approximation are also discussed.Furthermore,a formula that incorporates waveguide effects for the modal group velocity is derived,revealing that boundary effects at very low frequencies can have a significant impact on the propagation characteristics of even low-order normal modes.The present method not only offers improved accuracy compared to the classical WKB approximation and the uniform asymptotic approximation based on Airy functions,but also provides a wider range of depth applicability.Additionally,this method exhibits strong agreement with numerical methods and offers valuable physical insights.Finally,the method is applied to the study of very-low-frequency sound propagation in the South China Sea,leading to sound transmission loss predictions that closely align with experimental observations.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
文摘Objective:To investigate the effect of 12-lead electrocardiogram and 24-hour dynamic electrocardiogram in detecting pacemaker dysfunction and changes in cardiac function indexes in patients with pacemaker implantation.Methods:A total of 136 patients with pacemaker implantation in the First Clinical Medical College of Three Gorges University,Institute of Cardiovascular Disease of Three Gorges University and Yicang Central People’s Hospital from January 2023 to December 2024 were selected as the research objects.All patients received 12-lead electrocardiogram and 24-hour holter 3–14 days after implantation.Results:The overall detection rate of various types of pacemaker dysfunction by Holter was significantly higher than that by conventional ECG(27.21%vs.5.15%,χ^(2)=24.402,P<0.001).The overall arrhythmia detection rate of Holter was significantly higher than that of conventional electrocardiogram(57.35%vs.10.29%,χ^(2)=67.277,P<0.001).The time domain indexes of heart rate variability obtained by 24-hour continuous monitoring of Holter were significantly improved compared with those of conventional electrocardiogram(P<0.05).Conclusions:Compared with 12-lead electrocardiogram,24-hour holter monitoring can more accurately detect pacemaker dysfunction and arrhythmia in patients with pacemaker implantation,and provide more comprehensive data of heart rate variability,which is helpful for clinicians to better evaluate the cardiac function of patients and adjust treatment plans.
基金supported by the National Natural Science Foundation of China(Nos.12304504,12304506 and U22 A2012)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021023)+1 种基金the Strategy Priority Research Program(Category B)of Chinese Academy of Sciences(Nos.XDB0700100 and XDB0700000)the Natural Science Foundation of Tianjin(No.22JCYBJC00070).
文摘Normal mode extraction has attracted extensive attention over the past few decades due to its practical value in enhancing the performance of underwater acoustic signal processing.Singular value decomposition(SVD)is an effective method to extract modal depth functions using vertical line arrays(VLA),particularly in scenarios when no prior environment information is available.However,the SVD method requires rigorous orthogonality conditions,and its performance severely degenerates in the presence of mode degeneracy.Consequently,the SVD approach is often not feasible in practical scenarios.This paper proposes a full rank decomposition(FRD)method to address these issues.Compared to the SVD method,the FRD method has three distinct advantages:1)the conditions that the FRD method requires are much easier to be fulfilled in practical scenarios;2)both modal depth functions and wavenumbers can be simultaneously extracted via the FRD method;3)the FRD method is not affected by the phenomenon of mode degeneracy.Numerical simulations are conducted in two types of waveguides to verify the FRD method.The impacts of environment configurations and noise levels on the precision of the extracted modal depth functions and wavenumbers are also investigated through simulation.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金supported by the National Natural Science Foundation of China(No.51701239)the University-Industry Collaborative Education Program of MOEinChina(No.BINTECH-KJZX-20220831-35)the Basic-Scientific-Research-Business-Fee Supporting Project of Henan Province,China(Nos.2023KY35,2023KY40).
文摘Localized corrosion of 304 stainless steel being the significant parts of Starship rocket seriously threatens the long-term service of such aerospace equipment.Scanning electron microscopy,in situ instruments combining electrochemical workstation and Raman spectroscopy,and Density Dunctional Theory(DFT)calculations were employed.The surface morphologies,alloying elements,molecular fingerprint Raman evidence and theoretical mechanism for the localized corrosion of 304 stainless steel during the electrochemical polarization in the mixture solutions containing 0.5 mol/L H_(2)SO_(4) and 2,2'-bipyridine(bipy)with concentrations of 0.001,0.010,0.100 mol/L were discussed.In comparison,the presence of bipy up to 0.100 mol/L in such mixture solutions displayed the neglectable effect on the Fe(Ⅱ)/Fe(Ⅲ)reaction in the polarization process.Raman vibrational frequency around 1492 cm^(-1)was the evidence of pink color appearance due to the formation of[Fe^(Ⅱ)(bipy)_(3)]^(2+).Raman and DFT indicated the yellow color emergence due to the presence ofμ-O-[Fe^(Ⅲ)(bipy)_(2)(H_(2)O)]_(2)^(4+)due to the oxidation reaction of[Fe^(Ⅱ)(bipy)_(3)]^(2+)with H_(2)O_(2) oxidant,and the dimerization of[Fe^(Ⅲ)(bipy)_(3)]^(3+),Furthermore,a quantitative model between[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentration and Raman intensity at 1492 cm^(-1) has been built up.Two linear functions were revealed when[Fe^(Ⅱ)(bipy)_(3)]^(2+)concentrations were at 0-0.002 mol/L and 0.002-0.004 mol/L and a concentration error of less than 5%was evidenced in comparison with that investigated by the inductively coupled plasma.The proposed passivation mechanism and quantitative concentration model of 304 stainless steel have certain significance for its corrosion protection andcorrosionevaluation.
基金supported by the National Natural Science Foundation of China(82274675&82074573)the Beijing Natural Science Foundation(7232278).
文摘Objective:To investigate the effects of“Three Methods and Three Acupoints”(TMTP)Tuina therapy on spinal microcirculation in sciatic nerve injury(SNI).Methods:Thirty-six SpragueeDawley rats were randomly assigned to four groups:normal,sham operation,model,and TMTP Tuina.Successful model induction was confirmed by observable hind limb lameness.After 20 sessions,hind limb grip strength and motor nerve conduction velocity(MNCV)were measured at baseline and following the 10th and 20th intervention.CD31 and a-SMA in the ventral horn of SNI model rats were detected using immunofluorescence.Motor neurons in the ventral horn were detected by Nissl staining.PTEN levels in the ventral horn were measured by ELISA,and PI3K,Akt,BDNF,VEGF,and HIF-1a expression was determined by RT-PCR.Spinal cord microcirculation was evaluated by western blotting analysis of the levels of Akt,p-Akt,BDNF,and VEGF.Results:Hind limb grip strength and MNCV significantly improved in the TMTP Tuina group compared to the model group(both P<.001).Morphology of ventral horn motor neurons in the TMTP Tuina group improved compared to the model group,with increased expressions of a-SMA(P=.002)and CD31(P=.006).Western blot analysis indicated increased expression of VEGF(P=.005),p-Akt(P<.001),and BDNF(P=.008)in the ventral horn following Tuina treatment.RT-PCR analysis revealed increased expression of PI3K,Akt,BDNF,VEGF and HIF-1a(all P<.05).In contrast,expression of PTEN decreased compared to the model group(P<.001).Conclusion:TMTP Tuina therapy may restore motor function in rats,enhance ventral horn motor neuron morphology,and promote angiogenesis and vascular smooth muscle proliferation.The mechanism may involve the activation of the PI3K/Akt signaling pathway.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金supported in part by the Young Scientists Fund of National Natural Science Foundation of China (No.42206226)the National Key Research and Development Program of China (No.2021YFC3101603)。
文摘Data-derived normal mode extraction is an effective method for extracting normal mode depth functions in the absence of marine environmental data.However,when the corresponding singular vectors become nonunique when two or more singular values obtained from the cross-spectral density matrix diagonalization are nearly equal,this results in unsatisfactory extraction outcomes for the normal mode depth functions.To address this issue,we introduced in this paper a range-difference singular value decomposition method for the extraction of normal mode depth functions.We performed the mode extraction by conducting singular value decomposition on the individual frequency components of the signal's cross-spectral density matrix.This was achieved by using pressure and its range-difference matrices constructed from vertical line array data.The proposed method was validated using simulated data.In addition,modes were successfully extracted from ambient noise.
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
基金supported in part by NIH R01 NS100531,R01 NS103481NIH R21NS130241(to LD)+3 种基金Merit Review Award I01 BX002356,I01 BX003705 from the U.S.Department of Veterans AffairsIndiana Spinal Cord and Brain Injury Research Foundation(No.19919)Mari Hulman George Endowment Funds(to XMX)Indiana Spinal Cord&Brain Injury Research Fund from ISDH(to NKL and LD)。
文摘Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China(32270704,32100518 and 32472630)National Science and Technology Innovation 2030(2022ZD0214400)+1 种基金Engineering Shanghai Jiao Tong University(YG2022QN084)the U.S.National Institutes of Health(R35GM139484 to J.Z.)。
文摘Circular RNAs(circRNAs)are a class of endogenous,singlestranded,covalently closed,mostly non-coding RNAs that are produced by back-splicing that links a downstream splice-donor site with an upstream splice-acceptor site(Chen,2016;Kristensen et al.,2019).CircRNAs have been reported to have important regulatory functions,such as acting as miRNA(Hansen et al.,2013;Memczak et al.,2013)or protein(Ashwal-Fluss et al.,2014)sponge to regulate gene expression,acting as scaffolds to mediate the formation of complexes(Du et al.,2016),and being translated into small functional peptides(Pamudurti et al.,2017).Notwithstanding,of millions of known circRNAs,those with demonstrated functions are a tiny fraction.